def test_gate3_to_diagrams() -> None: circ = qf.Circuit() circ += qf.CCNot(0, 1, 2) circ += qf.CCNot(0, 2, 1) circ += qf.CSwap(0, 1, 2) circ += qf.CSwap(1, 0, 2) circ += qf.CCZ(0, 1, 2) circ += qf.CCiX(0, 1, 2) circ += qf.CCNot(0, 1, 2)**0.25 circ += qf.Deutsch(0.25, 0, 1, 2) circ += qf.CV(1, 0) circ += qf.CV_H(1, 0) print() diag = qf.circuit_to_diagram(circ) print(diag) diag = qf.circuit_to_diagram(circ, use_unicode=False) print(diag) latex = qf.circuit_to_latex(circ) if os.environ.get("QF_VIZTEST"): qf.latex_to_image(latex).show()
def test_evolve() -> None: rho0 = qf.random_state(3).asdensity() rho1 = qf.CCNot(0, 1, 2).evolve(rho0) dag = qf.DAGCircuit(qf.translate_ccnot_to_cnot(qf.CCNot(0, 1, 2))) rho2 = dag.evolve(rho0) assert qf.densities_close(rho1, rho2)
def test_circuit_aschannel() -> None: rho0 = qf.random_state(3).asdensity() rho1 = qf.CCNot(0, 1, 2).evolve(rho0) gate = qf.CCNot(0, 1, 2) circ = qf.Circuit(qf.translate_ccnot_to_cnot(gate)) chan = circ.aschannel() rho2 = chan.evolve(rho0) assert qf.densities_close(rho1, rho2)
def test_circuit_to_qutip() -> None: q0, q1, q2 = 0, 1, 2 circ0 = qf.Circuit() circ0 += qf.I(q0) circ0 += qf.Ph(0.1, q0) circ0 += qf.X(q0) circ0 += qf.Y(q1) circ0 += qf.Z(q0) circ0 += qf.S(q1) circ0 += qf.T(q2) circ0 += qf.H(q0) circ0 += qf.H(q1) circ0 += qf.H(q2) circ0 += qf.CNot(q0, q1) circ0 += qf.CNot(q1, q0) circ0 += qf.Swap(q0, q1) circ0 += qf.ISwap(q0, q1) circ0 += qf.CCNot(q0, q1, q2) circ0 += qf.CSwap(q0, q1, q2) circ0 == qf.I(q0) circ0 += qf.Rx(0.1, q0) circ0 += qf.Ry(0.2, q1) circ0 += qf.Rz(0.3, q2) circ0 += qf.V(q0) circ0 += qf.H(q1) circ0 += qf.CY(q0, q1) circ0 += qf.CZ(q0, q1) circ0 += qf.CS(q1, q2) circ0 += qf.CT(q0, q1) circ0 += qf.SqrtSwap(q0, q1) circ0 += qf.SqrtISwap(q0, q1) circ0 += qf.CCNot(q0, q1, q2) circ0 += qf.CSwap(q0, q1, q2) circ0 += qf.CPhase(0.1, q1, q2) # Not yet supported # circ0 += qf.B(q1, q2) # circ0 += qf.Swap(q1, q2) ** 0.1 qbc = xqutip.circuit_to_qutip(circ0) U = gate_sequence_product(qbc.propagators()) gate0 = qf.Unitary(U.full(), qubits=[0, 1, 2]) assert qf.gates_close(gate0, circ0.asgate()) circ1 = xqutip.qutip_to_circuit(qbc) assert qf.gates_close(circ0.asgate(), circ1.asgate())
def test_control_gate() -> None: gate0 = qf.ControlGate([0], qf.X(1)) gate1 = qf.CNot(0, 1) assert qf.gates_close(gate0, gate1) gateb = qf.ControlGate([1], qf.X(0)) gate2 = qf.CNot(1, 0) assert qf.gates_close(gateb, gate2) gate3 = qf.ControlGate([0], qf.Y(1)) gate4 = qf.CY(0, 1) assert qf.gates_close(gate3, gate4) gate5 = qf.ControlGate([0], qf.Z(1)) gate6 = qf.CZ(0, 1) assert qf.gates_close(gate5, gate6) gate7 = qf.ControlGate([0], qf.H(1)) gate8 = qf.CH(0, 1) assert qf.gates_close(gate7, gate8) gate9 = qf.ControlGate([0, 1], qf.X(2)) gate10 = qf.CCNot(0, 1, 2) assert qf.gates_close(gate9, gate10) gate11 = qf.ControlGate([0], qf.Swap(1, 2)) gate12 = qf.CSwap(0, 1, 2) assert qf.gates_close(gate11, gate12)
def _cli(): gates = [ qf.I(0), qf.X(0), qf.Y(0), qf.Z(0), qf.S(0), qf.T(0), qf.H(0), qf.XPow(0.2, 0), qf.YPow(0.2, 0), qf.ZPow(0.2, 0), qf.CNot(0, 1), qf.CZ(0, 1), qf.Swap(0, 1), qf.ISwap(0, 1), qf.CCNot(0, 1, 2), qf.CCZ(0, 1, 2), qf.CSwap(0, 1, 2), ] print() print("Gate QF GOPS Cirq GOPS") # for n in range(4): # circ = benchmark_circuit(QUBITS, GATES, qf.RandomGate([0,1])) # t = timeit.timeit(lambda: circ.run(), number=REPS, # timer=time.process_time) # gops = int((GATES*REPS)/t) # gops = int((gops * 100) + 0.5) / 100.0 # print(f"gate qubits: {n} gops:{gops}") for gate in gates: circ = benchmark_circuit(QUBITS, GATES, gate) t = timeit.timeit(lambda: circ.run(), number=REPS, timer=time.process_time) cq = qf.xcirq.CirqSimulator(circ) t2 = timeit.timeit(lambda: cq.run(), number=REPS, timer=time.process_time) gops = int((GATES * REPS) / t) gops = int((gops * 100) + 0.5) / 100.0 gops2 = int((GATES * REPS) / t2) gops2 = int((gops2 * 100) + 0.5) / 100.0 if gops / gops2 > 0.8: print(gate.name, "\t", gops, "\t", gops2) else: print(gate.name, "\t", gops, "\t", gops2, "\t☹️")
def test_circuit_to_circ() -> None: q0, q1, q2 = "q0", "q1", "q2" circ0 = qf.Circuit() circ0 += qf.I(q0) circ0 += qf.X(q1) circ0 += qf.Y(q2) circ0 += qf.Z(q0) circ0 += qf.S(q1) circ0 += qf.T(q2) circ0 += qf.H(q0) circ0 += qf.H(q1) circ0 += qf.H(q2) circ0 += qf.XPow(0.6, q0) circ0 += qf.YPow(0.6, q1) circ0 += qf.ZPow(0.6, q2) circ0 += qf.XX(0.2, q0, q1) circ0 += qf.YY(0.3, q1, q2) circ0 += qf.ZZ(0.4, q2, q0) circ0 += qf.CZ(q0, q1) circ0 += qf.CNot(q0, q1) circ0 += qf.Swap(q0, q1) circ0 += qf.ISwap(q0, q1) circ0 += qf.CCZ(q0, q1, q2) circ0 += qf.CCNot(q0, q1, q2) circ0 += qf.CSwap(q0, q1, q2) circ0 += qf.FSim(1, 2, q0, q1) diag0 = qf.circuit_to_diagram(circ0) # print() # print(diag0) cqc = circuit_to_cirq(circ0) # print(cqc) circ1 = cirq_to_circuit(cqc) diag1 = qf.circuit_to_diagram(circ1) # print() # print(diag1) assert diag0 == diag1
def test_cirq_simulator() -> None: q0, q1, q2 = "q0", "q1", "q2" circ0 = qf.Circuit() circ0 += qf.I(q0) circ0 += qf.I(q1) circ0 += qf.I(q2) circ0 += qf.X(q1) circ0 += qf.Y(q2) circ0 += qf.Z(q0) circ0 += qf.S(q1) circ0 += qf.T(q2) circ0 += qf.H(q0) circ0 += qf.H(q1) circ0 += qf.H(q2) circ0 += qf.XPow(0.6, q0) circ0 += qf.YPow(0.6, q1) circ0 += qf.ZPow(0.6, q2) circ0 += qf.XX(0.2, q0, q1) circ0 += qf.YY(0.3, q1, q2) circ0 += qf.ZZ(0.4, q2, q0) circ0 += qf.CZ(q0, q1) circ0 += qf.CNot(q0, q1) circ0 += qf.Swap(q0, q1) circ0 += qf.ISwap(q0, q1) circ0 += qf.CCZ(q0, q1, q2) circ0 += qf.CCNot(q0, q1, q2) circ0 += qf.CSwap(q0, q1, q2) ket0 = qf.random_state([q0, q1, q2]) ket1 = circ0.run(ket0) sim = CirqSimulator(circ0) ket2 = sim.run(ket0) assert ket1.qubits == ket2.qubits print(qf.state_angle(ket1, ket2)) assert qf.states_close(ket1, ket2) assert qf.states_close(circ0.run(), sim.run())
def test_visualize_circuit() -> None: circ = qf.Circuit() circ += qf.I(7) circ += qf.X(0) circ += qf.Y(1) circ += qf.Z(2) circ += qf.H(3) circ += qf.S(4) circ += qf.T(5) circ += qf.S_H(6) circ += qf.T_H(7) circ += qf.Rx(-0.5 * pi, 0) circ += qf.Ry(0.5 * pi, 4) circ += qf.Rz((1 / 3) * pi, 5) circ += qf.Ry(0.222, 6) circ += qf.XPow(0.5, 0) circ += qf.YPow(0.5, 2) circ += qf.ZPow(0.4, 2) circ += qf.HPow(0.5, 3) circ += qf.ZPow(0.47276, 1) # Gate with symbolic parameter # gate = qf.Rz(Symbol('\\theta'), 1) # circ += gate circ += qf.CNot(1, 2) circ += qf.CNot(2, 1) # circ += qf.IDEN(*range(8)) circ += qf.ISwap(4, 2) circ += qf.ISwap(6, 5) circ += qf.CZ(1, 3) circ += qf.Swap(1, 5) # circ += qf.Barrier(0, 1, 2, 3, 4, 5, 6) # Not yet supported in latex circ += qf.CCNot(1, 2, 3) circ += qf.CSwap(4, 5, 6) circ += qf.P0(0) circ += qf.P1(1) circ += qf.Reset(2) circ += qf.Reset(4, 5, 6) circ += qf.H(4) circ += qf.XX(0.25, 1, 4) circ += qf.XX(0.25, 1, 2) circ += qf.YY(0.75, 1, 3) circ += qf.ZZ(1 / 3, 3, 1) circ += qf.CPhase(0, 0, 1) circ += qf.CPhase(pi * 1 / 2, 0, 4) circ += qf.Can(1 / 3, 1 / 2, 1 / 2, 0, 1) circ += qf.Can(1 / 3, 1 / 2, 1 / 2, 2, 4) circ += qf.Can(1 / 3, 1 / 2, 1 / 2, 6, 5) # circ += qf.Measure(0) # circ += qf.Measure(1, 1) circ += qf.PSwap(pi / 2, 6, 7) circ += qf.Ph(1 / 4, 7) circ += qf.CH(1, 6) circ += qf.visualization.NoWire([0, 1, 2]) # circ += qf.visualization.NoWire(4, 1, 2) if os.environ.get("QF_VIZTEST"): print() print(qf.circuit_to_diagram(circ)) qf.circuit_to_diagram(circ) qf.circuit_to_latex(circ) qf.circuit_to_latex(circ, package="qcircuit") qf.circuit_to_latex(circ, package="quantikz") qf.circuit_to_diagram(circ) qf.circuit_to_diagram(circ, use_unicode=False) latex = qf.circuit_to_latex(circ, package="qcircuit") print(latex) if os.environ.get("QF_VIZTEST"): qf.latex_to_image(latex).show() latex = qf.circuit_to_latex(circ, package="quantikz") print(latex) if os.environ.get("QF_VIZTEST"): qf.latex_to_image(latex).show()
def test_control_circuit() -> None: ccnot = qf.control_circuit([0, 1], qf.X(2)) ket0 = qf.random_state(3) ket1 = qf.CCNot(0, 1, 2).run(ket0) ket2 = ccnot.run(ket0) assert qf.states_close(ket1, ket2)
def test_circuit_to_quirk() -> None: # 2-qubit gates quirk = "https://algassert.com/quirk#circuit={%22cols%22:[[1,%22X%22,%22%E2%80%A2%22],[%22%E2%80%A2%22,1,%22Z%22],[1,%22%E2%80%A2%22,%22Y%22],[%22Swap%22,1,%22Swap%22]]}" # noqa: E501 circ = qf.Circuit([qf.CNot(2, 1), qf.CZ(0, 2), qf.CY(1, 2), qf.Swap(0, 2)]) print() print(urllib.parse.unquote(quirk)) print(quirk_url(circuit_to_quirk(circ))) assert urllib.parse.unquote(quirk) == quirk_url(circuit_to_quirk(circ)) # 3-qubit gates quirk = "https://algassert.com/quirk#circuit={%22cols%22:[[%22%E2%80%A2%22,%22%E2%80%A2%22,%22X%22],[%22%E2%80%A2%22,%22%E2%80%A2%22,%22Z%22],[%22%E2%80%A2%22,%22Swap%22,%22Swap%22]]}" # noqa: E501 circ = qf.Circuit([qf.CCNot(0, 1, 2), qf.CCZ(0, 1, 2), qf.CSwap(0, 1, 2)]) print() print(urllib.parse.unquote(quirk)) print(quirk_url(circuit_to_quirk(circ))) assert urllib.parse.unquote(quirk) == quirk_url(circuit_to_quirk(circ)) test0 = "https://algassert.com/quirk#circuit={%22cols%22:[[%22Z%22,%22Y%22,%22X%22,%22H%22]]}" # noqa: E501 test0 = urllib.parse.unquote(test0) circ = qf.Circuit([qf.Z(0), qf.Y(1), qf.X(2), qf.H(3)]) print(test0) print(quirk_url(circuit_to_quirk(circ))) assert test0 == quirk_url(circuit_to_quirk(circ)) test_halfturns = "https://algassert.com/quirk#circuit={%22cols%22:[[%22X^%C2%BD%22,%22Y^%C2%BD%22,%22Z^%C2%BD%22],[%22X^-%C2%BD%22,%22Y^-%C2%BD%22,%22Z^-%C2%BD%22]]}" # noqa: E501 test_halfturns = urllib.parse.unquote(test_halfturns) circ = qf.Circuit( [qf.V(0), qf.SqrtY(1), qf.S(2), qf.V(0).H, qf.SqrtY(1).H, qf.S(2).H]) print(test_halfturns) print(quirk_url(circuit_to_quirk(circ))) assert test_halfturns == quirk_url(circuit_to_quirk(circ)) quarter_turns = "https://algassert.com/quirk#circuit={%22cols%22:[[%22Z^%C2%BC%22],[%22Z^-%C2%BC%22]]}" # noqa: E501 s = urllib.parse.unquote(quarter_turns) circ = qf.Circuit([qf.T(0), qf.T(0).H]) assert s == quirk_url(circuit_to_quirk(circ)) # GHZ circuit quirk = "https://algassert.com/quirk#circuit={%22cols%22:[[%22H%22],[%22%E2%80%A2%22,%22X%22],[1,%22%E2%80%A2%22,%22X%22]]}" # noqa: E501 circ = qf.Circuit([qf.H(0), qf.CNot(0, 1), qf.CNot(1, 2)]) print(urllib.parse.unquote(quirk)) print(quirk_url(circuit_to_quirk(circ))) assert urllib.parse.unquote(quirk) == quirk_url(circuit_to_quirk(circ)) test_formulaic = "https://algassert.com/quirk#circuit={%22cols%22:[[{%22id%22:%22X^ft%22,%22arg%22:%220.1%22},{%22id%22:%22Y^ft%22,%22arg%22:%220.2%22},{%22id%22:%22Z^ft%22,%22arg%22:%220.3%22}],[{%22id%22:%22Rxft%22,%22arg%22:%220.4%22},{%22id%22:%22Ryft%22,%22arg%22:%220.5%22},{%22id%22:%22Rzft%22,%22arg%22:%220.6%22}]]}" # noqa: E501 s = urllib.parse.unquote(test_formulaic) circ = qf.Circuit([ qf.XPow(0.1, 0), qf.YPow(0.2, 1), qf.ZPow(0.3, 2), qf.Rx(0.4, 0), qf.Ry(0.5, 1), qf.Rz(0.6, 2), ]) assert s == quirk_url(circuit_to_quirk(circ))