Пример #1
0
 def test_kron_basic(self, parallel):
     a = qu.rand_ket(2)
     b = qu.rand_ket(4)
     c = qu.rand_ket(4)
     d = qu.rand_ket(5)
     t = qu.kron(a, b, c, d, parallel=parallel)
     assert_allclose(t, a & b & c & d)
Пример #2
0
 def test_bell_state(self):
     p = qu.bell_state('psi-')
     assert_allclose(qu.schmidt_gap(p, [2, 2], 0), 0.0)
     p = qu.up() & qu.down()
     assert_allclose(qu.schmidt_gap(p, [2, 2], 0), 1.0)
     p = qu.rand_ket(2**3)
     assert 0 < qu.schmidt_gap(p, [2] * 3, sysa=[0, 1]) < 1.0
Пример #3
0
 def test_bell_state(self):
     p = bell_state('psi-')
     assert_allclose(schmidt_gap(p, [2, 2], 0), 0.0)
     p = up() & down()
     assert_allclose(schmidt_gap(p, [2, 2], 0), 1.0)
     p = rand_ket(2**3)
     assert 0 < schmidt_gap(p, [2] * 3, sysa=[0, 1]) < 1.0
Пример #4
0
 def test_quantum_discord_pure(self):
     for _ in range(10):
         p = qu.rand_ket(4)
         p = p @ p.H
         iab = qu.mutual_information(p)
         qd = qu.quantum_discord(p)
         assert_allclose(iab / 2, qd)
Пример #5
0
 def test_from_dense(self):
     psi = qu.rand_ket(2**8)
     mps = MatrixProductState.from_dense(psi, dims=[2] * 8)
     assert mps.tags == {'I{}'.format(i) for i in range(8)}
     assert mps.site_inds == tuple('k{}'.format(i) for i in range(8))
     assert mps.nsites == 8
     mpod = mps.to_dense()
     assert qu.expec(mpod, psi) == pytest.approx(1)
Пример #6
0
 def test_bigger(self):
     psi = qu.rand_ket(2**5)
     assert np.sum(abs(psi) < 1e-12) == 0
     A = qu.kronpow(qu.pauli('Z'), 5)
     res, psi_after = qu.measure(psi, A, eigenvalue=-1.0)
     # should have projected to half subspace
     assert np.sum(abs(psi_after) < 1e-12) == 2**4
     assert res == -1.0
Пример #7
0
 def test_vec_dense(self):
     a = qu.rand_ket(4)
     b = qu.core._trace_keep(a, [2, 2], 0)
     c = qu.partial_trace(a.A, [2, 2], 0)
     assert_allclose(b, c)
     b = qu.core._trace_keep(a, [2, 2], 1)
     c = qu.partial_trace(a.A, [2, 2], 1)
     assert_allclose(b, c)
Пример #8
0
 def test_vec_dense(self):
     a = rand_ket(4)
     b = _trace_lose(a, [2, 2], 1)
     c = partial_trace(a.A, [2, 2], 0)
     assert_allclose(b, c)
     b = _trace_lose(a, [2, 2], 0)
     c = partial_trace(a.A, [2, 2], 1)
     assert_allclose(b, c)
Пример #9
0
 def test_mutinf_subsys_pure(self):
     p = rand_ket(2**7)
     dims = (2**3, 2**4)
     # exact
     mi0 = mutual_information(p, dims, sysa=0)
     mi1 = mutinf_subsys(p, dims, sysa=0, sysb=1, approx_thresh=1e30)
     assert_allclose(mi1, mi0)
     # approx
     mi2 = mutinf_subsys(p, dims, sysa=0, sysb=1, approx_thresh=1)
     assert_allclose(mi1, mi2, rtol=5e-2)
Пример #10
0
    def test_entropy_subsystem(self):
        p = rand_ket(2**9)
        # exact
        e1 = entropy_subsys(p, (2**5, 2**4), 0, approx_thresh=1e30)
        # approx
        e2 = entropy_subsys(p, (2**5, 2**4), 0, approx_thresh=1)
        assert e1 != e2
        assert_allclose(e1, e2, rtol=5e-2)

        assert entropy_subsys(p, (2**5, 2**4), [0, 1], approx_thresh=1) == 0.0
Пример #11
0
 def test_expm_slepc(self, expm_backend):
     ham = qu.ham_mbl(7, dh=0.5, sparse=True)
     psi = qu.rand_ket(2**7)
     evo_exact = qu.Evolution(psi, ham, method='solve')
     evo_slepc = qu.Evolution(psi,
                              ham,
                              method='expm',
                              expm_backend=expm_backend)
     ts = np.linspace(0, 100, 6)
     for p1, p2 in zip(evo_exact.at_times(ts), evo_slepc.at_times(ts)):
         assert abs(qu.expec(p1, p2) - 1) < 1e-9
Пример #12
0
 def test_mutinf_subsys(self):
     p = qu.rand_ket(2**9)
     dims = (2**3, 2**2, 2**4)
     # exact
     rho_ab = qu.ptr(p, dims, [0, 2])
     mi0 = qu.mutual_information(rho_ab, [8, 16])
     mi1 = qu.mutinf_subsys(p, dims, sysa=0, sysb=2, approx_thresh=1e30)
     assert_allclose(mi1, mi0)
     # approx
     mi2 = qu.mutinf_subsys(p, dims, sysa=0, sysb=2, approx_thresh=1)
     assert_allclose(mi1, mi2, rtol=0.1)
Пример #13
0
    def test_exp_sparse(self):

        a = rand_herm(100, sparse=True, density=0.1)
        k = rand_ket(100)

        out = mfn_multiply_slepc(a, k)

        al, av = eigh(a.A)
        expected = av @ np.diag(np.exp(al)) @ av.conj().T @ k

        assert_allclose(out, expected)
Пример #14
0
 def test_construct(self, gate, dtype, sparse):
     if gate in ('Rx', 'Ry', 'Rz', 'phase_gate'):
         args = (0.43827, )
     elif gate in ('U_gate'):
         args = (0.1, 0.2, 0.3)
     else:
         args = ()
     G = getattr(qu, gate)(*args, dtype=dtype, sparse=sparse)
     assert G.dtype == dtype
     assert qu.issparse(G) is sparse
     psi = qu.rand_ket(G.shape[0])
     Gpsi = G @ psi
     assert qu.expec(Gpsi, Gpsi) == pytest.approx(1.0)
Пример #15
0
 def test_logneg_subsys_pure_should_swap_subsys(self):
     p = qu.rand_ket(2**(5 + 2))
     dims = (2**5, 2**2)
     sysa = 0
     sysb = 1
     # exact 1
     ln0 = qu.logneg(p, dims, 0)
     # exact 2
     ln1 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1e30)
     assert_allclose(ln0, ln1)
     # approx
     ln2 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1, tol=0.005)
     assert ln1 != ln2
     assert_allclose(ln1, ln2, rtol=0.2)
Пример #16
0
 def test_logneg_subsys_pure(self):
     p = qu.rand_ket(2**(3 + 4))
     dims = (2**3, 2**4)
     sysa = 0
     sysb = 1
     # exact 1
     ln0 = qu.logneg(p, dims, 0)
     # exact 2
     ln1 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1e30)
     assert_allclose(ln0, ln1)
     # approx
     ln2 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1, tol=5e-3)
     assert ln1 != ln2
     assert_allclose(ln1, ln2, rtol=1e-1)
Пример #17
0
 def test_logneg_subsys(self):
     p = qu.rand_ket(2**(2 + 3 + 1 + 2))
     dims = (2**2, 2**3, 2**1, 2**2)
     sysa = [0, 3]
     sysb = 1
     # exact 1
     ln0 = qu.logneg(qu.ptr(p, dims, [0, 1, 3]), [4, 8, 4], [0, 2])
     # exact 2
     ln1 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1e30)
     assert_allclose(ln0, ln1)
     # approx
     ln2 = qu.logneg_subsys(p, dims, sysa, sysb, approx_thresh=1)
     assert ln1 != ln2
     assert_allclose(ln1, ln2, rtol=5e-2)
Пример #18
0
    def test_sqrt_sparse(self):
        import scipy.sparse as sp

        a = rand_pos(32, sparse=True, density=0.1)
        a = a + 0.001 * sp.eye(32)
        k = rand_ket(32)

        out = mfn_multiply_slepc(a, k, fntype='sqrt', isherm=True)

        al, av = eigh(a.A)
        al[al < 0] = 0.0  # very small neg values spoil sqrt
        expected = av @ np.diag(np.sqrt(al)) @ av.conj().T @ k

        assert_allclose(out, expected, rtol=1e-6)
Пример #19
0
 def test_expm_krylov_expokit(self):
     ham = rand_herm(100, sparse=True, density=0.8)
     psi = rand_ket(100)
     evo_exact = QuEvo(psi, ham, method='solve')
     evo_krylov = QuEvo(psi,
                        ham,
                        method='expm',
                        expm_backend='slepc-krylov')
     evo_expokit = QuEvo(psi,
                         ham,
                         method='expm',
                         expm_backend='slepc-expokit')
     ts = np.linspace(0, 100, 21)
     for p1, p2, p3 in zip(evo_exact.at_times(ts), evo_krylov.at_times(ts),
                           evo_expokit.at_times(ts)):
         assert abs(expec(p1, p2) - 1) < 1e-9
         assert abs(expec(p1, p3) - 1) < 1e-9
Пример #20
0
def ham_rcr_psi():
    # Define a random hamiltonian with a known recurrence time
    d = 3
    np.random.seed(1)
    ems = np.random.randint(1, 6, d)
    ens = np.random.randint(1, 6, d)  # eigenvalues as rational numbers
    # numerator lowest common divisor
    LCD = reduce(gcd, ems)
    # denominator lowest common multiple
    LCM = reduce(lambda a, b: a * b // gcd(a, b), ens)
    trc = 2 * pi * LCM / LCD
    evals = np.array(ems) / np.array(ens)
    v = rand_uni(d)
    ham = v @ np.diag(evals) @ v.H
    p0 = rand_ket(d)
    tm = 0.573 * trc
    pm = v @ np.diag(np.exp(-1.0j * tm * evals)) @ v.H @ p0
    return ham, trc, p0, tm, pm
Пример #21
0
 def test_swap_higher_dim(self, sparse):
     a = qu.rand_ket(9)
     s = qu.swap(3, sparse=sparse)
     assert_allclose(s @ a, a.reshape([3, 3]).T.reshape([9, 1]))
Пример #22
0
def psi_mb_ab_mat():
    return np.concatenate(
        [rand_ket(prod(DIMS_MB[:7])) for _ in range(6)],
        axis=1)
Пример #23
0
def psi_mb_ab():
    return rand_ket(prod(DIMS_MB[:7]))
Пример #24
0
def psi_mb_abc():
    return rand_ket(prod(DIMS_MB))
Пример #25
0
def psi_ab_mat():
    return np.concatenate(
        [rand_ket(prod(DIMS[:-1])) for _ in range(6)],
        axis=1)
Пример #26
0
def psi_ab():
    return rand_ket(prod(DIMS[:-1]))
Пример #27
0
def psi_abc():
    return rand_ket(prod(DIMS))
Пример #28
0
def ket_d2():
    return rand_ket(_TEST_SZ)
Пример #29
0
 def test_permute_sparse_ket(self):
     dims = [3, 2, 5, 4]
     a = qu.rand_ket(qu.prod(dims), sparse=True, density=0.5)
     b = qu.permute(a, dims, [3, 1, 2, 0])
     c = qu.permute(a.A, dims, [3, 1, 2, 0])
     assert_allclose(b.A, c)
Пример #30
0
 def test_partial_trace_simple_ket(self):
     a = qu.rand_ket(12, sparse=True, density=0.5)
     dims = [2, 3, 2]
     b = qu.partial_trace(a, dims, [0, 1])
     c = qu.partial_trace(a.A, dims, [0, 1])
     assert_allclose(b, c)