Пример #1
0
def test_validate_df():
    """Tests the validate_df() function in generate.py."""

    # Check that the min_row_ct and min_col_ct arguments work properly.
    normal2x2DF = DataFrame({"x": [1, 2], "y": [3, 4]}, index=["a", "b"])
    validate_df(normal2x2DF, "Normal 2x2 DF", 0, 0)
    validate_df(normal2x2DF, "Normal 2x2 DF", 1, 1)
    validate_df(normal2x2DF, "Normal 2x2 DF", 2, 2)
    with pytest.raises(ValueError):
        validate_df(normal2x2DF, "Normal 2x2 DF", 2, 3)
    with pytest.raises(ValueError):
        validate_df(normal2x2DF, "Normal 2x2 DF", 2, 4)
    with pytest.raises(ValueError):
        validate_df(normal2x2DF, "Normal 2x2 DF", 3, 2)
    with pytest.raises(ValueError):
        validate_df(normal2x2DF, "Normal 2x2 DF", 4, 2)

    # Test that the ensure_df_headers_unique() call works. We don't go as in
    # depth here as we do above, but we do still want to make sure that it
    # works as expected.

    # This is just df_bad from test_ensure_df_headers_unique().
    nonuniqueRowDF = DataFrame({
        "col1": [1, 2, 3],
        "col2": [6, 7, 8]
    },
                               index=["a", "b", "a"])
    with pytest.raises(ValueError):
        validate_df(nonuniqueRowDF, "Non-unique-row DF", 3, 2)

    # Check that errors don't "cancel out" (obviously shouldn't be the case,
    # but might as well be safe)
    with pytest.raises(ValueError):
        validate_df(nonuniqueRowDF, "Non-unique-row DF", 3, 3)

    # This is just df_bad4 from test_ensure_df_headers_unique().
    nonuniqueColDF = DataFrame(
        [[1, 6], [2, 7], [3, 8]],
        columns=["col1", "col1"],
        index=["a", "b", "c"],
    )
    with pytest.raises(ValueError):
        validate_df(nonuniqueColDF, "Non-unique-column DF", 3, 2)

    # This is just df_bad5 from test_ensure_df_headers_unique().
    nonuniqueColRowDF = DataFrame(
        [[1, 6], [2, 7], [3, 8]],
        columns=["col1", "col1"],
        index=["a", "b", "a"],
    )
    with pytest.raises(ValueError):
        validate_df(nonuniqueColRowDF, "Non-unique-column-and-row DF", 3, 2)
Пример #2
0
def process_input(
    feature_ranks,
    sample_metadata,
    biom_table,
    feature_metadata=None,
    extreme_feature_count=None,
):
    """Validates/processes the input files and parameter(s) to Qurro.

       In particular, this function

       1. Calls validate_df() and then check_column_names() on all of the
          input DataFrames passed (feature ranks, sample metadata, feature
          metadata if passed).

       2. Calls replace_nan() on the metadata DataFrame(s), so that all
          missing values are represented consistently with a None (which
          will be represented as a null in JSON/JavaScript).

       3. Converts the BIOM table to a SparseDataFrame by calling
          biom_table_to_sparse_df().

       4. Matches up the table with the feature ranks and sample metadata by
          calling match_table_and_data().

       5. Calls filter_unextreme_features() using the provided
          extreme_feature_count. (If it's None, then nothing will be done.)

       6. Calls remove_empty_samples_and_features() to filter empty samples
          (and features). This is purposefully done *after*
          filter_unextreme_features() is called.

       7. Calls merge_feature_metadata() on the feature ranks and feature
          metadata. (If feature metadata is None, nothing will be done.)

       Returns
       -------
       output_metadata: pd.DataFrame
            Sample metadata, but matched with the table and with empty samples
            removed.

       output_ranks: pd.DataFrame
            Feature ranks, post-filtering and with feature metadata columns
            added in.

       ranking_ids
            The ranking columns' names in output_ranks.

       feature_metadata_cols: list
            The feature metadata columns' names in output_ranks.

       output_table: pd.SparseDataFrame
            The BIOM table, post matching with the feature ranks and sample
            metadata and with empty samples removed.
    """

    logging.debug("Starting processing input.")

    validate_df(feature_ranks, "feature ranks", 2, 1)
    validate_df(sample_metadata, "sample metadata", 1, 1)
    if feature_metadata is not None:
        # It's cool if there aren't any features actually described in the
        # feature metadata (hence why we pass in 0 as the minimum # of rows in
        # the feature metadata DataFrame), but we still pass it to
        # validate_df() in order to ensure that:
        #   1) there's at least one feature metadata column (because
        #      otherwise the feature metadata is useless)
        #   2) column names are unique
        validate_df(feature_metadata, "feature metadata", 0, 1)

    check_column_names(sample_metadata, feature_ranks, feature_metadata)

    # Replace NaN values (which both _metadata_utils.read_metadata_file() and
    # qiime2.Metadata use to represent missing values, i.e. ""s) with None --
    # this is generally easier for us to handle in the JS side of things (since
    # it'll just be consistently converted to null by json.dumps()).
    sample_metadata = replace_nan(sample_metadata)
    if feature_metadata is not None:
        feature_metadata = replace_nan(feature_metadata)

    table = biom_table_to_sparse_df(biom_table)

    # Match up the table with the feature ranks and sample metadata.
    m_table, m_sample_metadata = match_table_and_data(table, feature_ranks,
                                                      sample_metadata)

    # Note that although we always call filter_unextreme_features(), filtering
    # isn't necessarily always done (whether or not depends on the value of
    # extreme_feature_count and the contents of the table/ranks).
    filtered_table, filtered_ranks = filter_unextreme_features(
        m_table, feature_ranks, extreme_feature_count)

    # Filter now-empty samples (and empty features) from the BIOM table.
    output_table, output_metadata, u_ranks = remove_empty_samples_and_features(
        filtered_table, m_sample_metadata, filtered_ranks)

    # Save a list of ranking IDs (before we add in feature metadata)
    # TODO: just have merge_feature_metadata() give us this?
    ranking_ids = u_ranks.columns

    output_ranks, feature_metadata_cols = merge_feature_metadata(
        u_ranks, feature_metadata)

    logging.debug("Finished input processing.")
    return (
        output_metadata,
        output_ranks,
        ranking_ids,
        feature_metadata_cols,
        output_table,
    )