Пример #1
0
def test_parallel_map():
    "parallel_map"

    args = (1, 2, 3)
    kwargs = {'d': 4, 'e': 5, 'f': 6}

    x = np.arange(10)
    y1 = list(map(_func1, x))
    y1 = [_func2(xx, *args, **kwargs) for xx in x]

    y2 = parallel_map(_func2, x, args, kwargs, num_cpus=1)
    assert_((np.array(y1) == np.array(y2)).all())

    y2 = parallel_map(_func2, x, args, kwargs, num_cpus=2)
    assert_((np.array(y1) == np.array(y2)).all())
Пример #2
0
def test_parallel_map():
    "parallel_map"

    args = (1, 2, 3)
    kwargs = {'d': 4, 'e': 5, 'f': 6}

    x = np.arange(10)
    y1 = list(map(_func1, x))
    y1 = [_func2(xx, *args, **kwargs)for xx in x]

    y2 = parallel_map(_func2, x, args, kwargs, num_cpus=1)
    assert_((np.array(y1) == np.array(y2)).all())

    y2 = parallel_map(_func2, x, args, kwargs, num_cpus=2)
    assert_((np.array(y1) == np.array(y2)).all())
Пример #3
0
def propagator(H, t, c_op_list=[], args={}, options=None,
               unitary_mode='batch', parallel=False, 
               progress_bar=None, **kwargs):
    """
    Calculate the propagator U(t) for the density matrix or wave function such
    that :math:`\psi(t) = U(t)\psi(0)` or
    :math:`\\rho_{\mathrm vec}(t) = U(t) \\rho_{\mathrm vec}(0)`
    where :math:`\\rho_{\mathrm vec}` is the vector representation of the
    density matrix.

    Parameters
    ----------
    H : qobj or list
        Hamiltonian as a Qobj instance of a nested list of Qobjs and
        coefficients in the list-string or list-function format for
        time-dependent Hamiltonians (see description in :func:`qutip.mesolve`).

    t : float or array-like
        Time or list of times for which to evaluate the propagator.

    c_op_list : list
        List of qobj collapse operators.

    args : list/array/dictionary
        Parameters to callback functions for time-dependent Hamiltonians and
        collapse operators.

    options : :class:`qutip.Options`
        with options for the ODE solver.

    unitary_mode = str ('batch', 'single')
        Solve all basis vectors simulaneously ('batch') or individually 
        ('single').
    
    parallel : bool {False, True}
        Run the propagator in parallel mode. This will override the 
        unitary_mode settings if set to True.
    
    progress_bar: BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation. By default no progress bar
        is used, and if set to True a TextProgressBar will be used.

    Returns
    -------
     a : qobj
        Instance representing the propagator :math:`U(t)`.

    """
    kw = _default_kwargs()
    if 'num_cpus' in kwargs:
        num_cpus = kwargs['num_cpus']
    else:
        num_cpus = kw['num_cpus']
    
    if progress_bar is None:
        progress_bar = BaseProgressBar()
    elif progress_bar is True:
        progress_bar = TextProgressBar()

    if options is None:
        options = Options()
        options.rhs_reuse = True
        rhs_clear()

    if isinstance(t, (int, float, np.integer, np.floating)):
        tlist = [0, t]
    else:
        tlist = t

    td_type = _td_format_check(H, c_op_list, solver='me')
        
    if isinstance(H, (types.FunctionType, types.BuiltinFunctionType,
                      functools.partial)):
        H0 = H(0.0, args)
    elif isinstance(H, list):
        H0 = H[0][0] if isinstance(H[0], list) else H[0]
    else:
        H0 = H
    
    if len(c_op_list) == 0 and H0.isoper:
        # calculate propagator for the wave function

        N = H0.shape[0]
        dims = H0.dims
        
        if parallel:
            unitary_mode = 'single'
            u = np.zeros([N, N, len(tlist)], dtype=complex)
            output = parallel_map(_parallel_sesolve,range(N),
                    task_args=(N,H, tlist,args,options),
                    progress_bar=progress_bar, num_cpus=num_cpus)
            for n in range(N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = output[n].states[k].full().T 
        else:
            if unitary_mode == 'single':
                u = np.zeros([N, N, len(tlist)], dtype=complex)
                progress_bar.start(N)
                for n in range(0, N):
                    progress_bar.update(n)
                    psi0 = basis(N, n)
                    output = sesolve(H, psi0, tlist, [], args, options, _safe_mode=False) 
                    for k, t in enumerate(tlist):
                        u[:, n, k] = output.states[k].full().T
                    progress_bar.finished() 

            elif unitary_mode =='batch':
                u = np.zeros(len(tlist), dtype=object)
                _rows = np.array([(N+1)*m for m in range(N)])
                _cols = np.zeros_like(_rows)
                _data = np.ones_like(_rows,dtype=complex)
                psi0 = Qobj(sp.coo_matrix((_data,(_rows,_cols))).tocsr())
                if td_type[1] > 0 or td_type[2] > 0:
                    H2 = []
                    for k in range(len(H)):
                        if isinstance(H[k], list):
                            H2.append([tensor(qeye(N), H[k][0]), H[k][1]])
                        else:
                            H2.append(tensor(qeye(N), H[k]))
                else:
                    H2 = tensor(qeye(N), H)
                output = sesolve(H2, psi0, tlist, [] , args = args, _safe_mode=False, 
                             options=Options(normalize_output=False))
                for k, t in enumerate(tlist):
                    u[k] = sp_reshape(output.states[k].data, (N, N))
                    unit_row_norm(u[k].data, u[k].indptr, u[k].shape[0])
                    u[k] = u[k].T.tocsr()
            else:
                raise Exception('Invalid unitary mode.')
                        

    elif len(c_op_list) == 0 and H0.issuper:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)
        unitary_mode = 'single'
        N = H0.shape[0]
        sqrt_N = int(np.sqrt(N))
        dims = H0.dims
        
        u = np.zeros([N, N, len(tlist)], dtype=complex)

        if parallel:
            output = parallel_map(_parallel_mesolve,range(N * N),
                    task_args=(sqrt_N,H,tlist,c_op_list,args,options),
                    progress_bar=progress_bar, num_cpus=num_cpus)
            for n in range(N * N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output[n].states[k].full()).T
        else:
            progress_bar.start(N)
            for n in range(0, N):
                progress_bar.update(n)
                col_idx, row_idx = np.unravel_index(n,(sqrt_N,sqrt_N))
                rho0 = Qobj(sp.csr_matrix(([1],([row_idx],[col_idx])), shape=(sqrt_N,sqrt_N), dtype=complex))
                output = mesolve(H, rho0, tlist, [], [], args, options, _safe_mode=False)
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output.states[k].full()).T
            progress_bar.finished()

    else:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)
        unitary_mode = 'single'
        N = H0.shape[0]
        dims = [H0.dims, H0.dims]

        u = np.zeros([N * N, N * N, len(tlist)], dtype=complex)
        
        if parallel:
            output = parallel_map(_parallel_mesolve,range(N * N),
                    task_args=(N,H,tlist,c_op_list,args,options),
                    progress_bar=progress_bar, num_cpus=num_cpus)
            for n in range(N * N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output[n].states[k].full()).T
        else:
            progress_bar.start(N * N)
            for n in range(N * N):
                progress_bar.update(n)
                col_idx, row_idx = np.unravel_index(n,(N,N))
                rho0 = Qobj(sp.csr_matrix(([1],([row_idx],[col_idx])), shape=(N,N), dtype=complex))
                output = mesolve(H, rho0, tlist, c_op_list, [], args, options, _safe_mode=False)
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output.states[k].full()).T
            progress_bar.finished()

    if len(tlist) == 2:
        if unitary_mode == 'batch':
            return Qobj(u[-1], dims=dims)
        else:
            return Qobj(u[:, :, 1], dims=dims)
    else:
        if unitary_mode == 'batch':
            return np.array([Qobj(u[k], dims=dims) for k in range(len(tlist))], dtype=object)
        else:
            return np.array([Qobj(u[:, :, k], dims=dims) for k in range(len(tlist))], dtype=object)
Пример #4
0
def propagator(H,
               t,
               c_op_list=[],
               args={},
               options=None,
               unitary_mode='batch',
               parallel=False,
               progress_bar=None,
               _safe_mode=True,
               **kwargs):
    r"""
    Calculate the propagator U(t) for the density matrix or wave function such
    that :math:`\psi(t) = U(t)\psi(0)` or
    :math:`\rho_{\mathrm vec}(t) = U(t) \rho_{\mathrm vec}(0)`
    where :math:`\rho_{\mathrm vec}` is the vector representation of the
    density matrix.

    Parameters
    ----------
    H : qobj or list
        Hamiltonian as a Qobj instance of a nested list of Qobjs and
        coefficients in the list-string or list-function format for
        time-dependent Hamiltonians (see description in :func:`qutip.mesolve`).

    t : float or array-like
        Time or list of times for which to evaluate the propagator.

    c_op_list : list
        List of qobj collapse operators.

    args : list/array/dictionary
        Parameters to callback functions for time-dependent Hamiltonians and
        collapse operators.

    options : :class:`qutip.Options`
        with options for the ODE solver.

    unitary_mode = str ('batch', 'single')
        Solve all basis vectors simulaneously ('batch') or individually
        ('single').

    parallel : bool {False, True}
        Run the propagator in parallel mode. This will override the
        unitary_mode settings if set to True.

    progress_bar: BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation. By default no progress bar
        is used, and if set to True a TextProgressBar will be used.

    Returns
    -------
     a : qobj
        Instance representing the propagator :math:`U(t)`.

    """
    kw = _default_kwargs()
    if 'num_cpus' in kwargs:
        num_cpus = kwargs['num_cpus']
    else:
        num_cpus = kw['num_cpus']

    if progress_bar is None:
        progress_bar = BaseProgressBar()
    elif progress_bar is True:
        progress_bar = TextProgressBar()

    if options is None:
        options = Options()
        options.rhs_reuse = True
        rhs_clear()

    if isinstance(t, (int, float, np.integer, np.floating)):
        tlist = [0, t]
    else:
        tlist = t

    if _safe_mode:
        _solver_safety_check(H, None, c_ops=c_op_list, e_ops=[], args=args)

    td_type = _td_format_check(H, c_op_list, solver='me')

    if isinstance(
            H,
        (types.FunctionType, types.BuiltinFunctionType, functools.partial)):
        H0 = H(0.0, args)
        if unitary_mode == 'batch':
            # batch don't work with function Hamiltonian
            unitary_mode = 'single'
    elif isinstance(H, list):
        H0 = H[0][0] if isinstance(H[0], list) else H[0]
    else:
        H0 = H

    if len(c_op_list) == 0 and H0.isoper:
        # calculate propagator for the wave function

        N = H0.shape[0]
        dims = H0.dims

        if parallel:
            unitary_mode = 'single'
            u = np.zeros([N, N, len(tlist)], dtype=complex)
            output = parallel_map(_parallel_sesolve,
                                  range(N),
                                  task_args=(N, H, tlist, args, options),
                                  progress_bar=progress_bar,
                                  num_cpus=num_cpus)
            for n in range(N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = output[n].states[k].full().T
        else:
            if unitary_mode == 'single':
                output = sesolve(H,
                                 qeye(dims[0]),
                                 tlist, [],
                                 args,
                                 options,
                                 _safe_mode=False)
                if len(tlist) == 2:
                    return output.states[-1]
                else:
                    return output.states

            elif unitary_mode == 'batch':
                u = np.zeros(len(tlist), dtype=object)
                _rows = np.array([(N + 1) * m for m in range(N)])
                _cols = np.zeros_like(_rows)
                _data = np.ones_like(_rows, dtype=complex)
                psi0 = Qobj(sp.coo_matrix((_data, (_rows, _cols))).tocsr())
                if td_type[1] > 0 or td_type[2] > 0:
                    H2 = []
                    for k in range(len(H)):
                        if isinstance(H[k], list):
                            H2.append([tensor(qeye(N), H[k][0]), H[k][1]])
                        else:
                            H2.append(tensor(qeye(N), H[k]))
                else:
                    H2 = tensor(qeye(N), H)
                options.normalize_output = False
                output = sesolve(H2,
                                 psi0,
                                 tlist, [],
                                 args=args,
                                 options=options,
                                 _safe_mode=False)
                for k, t in enumerate(tlist):
                    u[k] = sp_reshape(output.states[k].data, (N, N))
                    unit_row_norm(u[k].data, u[k].indptr, u[k].shape[0])
                    u[k] = u[k].T.tocsr()

            else:
                raise Exception('Invalid unitary mode.')

    elif len(c_op_list) == 0 and H0.issuper:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)
        unitary_mode = 'single'
        N = H0.shape[0]
        sqrt_N = int(np.sqrt(N))
        dims = H0.dims

        u = np.zeros([N, N, len(tlist)], dtype=complex)

        if parallel:
            output = parallel_map(_parallel_mesolve,
                                  range(N * N),
                                  task_args=(sqrt_N, H, tlist, c_op_list, args,
                                             options),
                                  progress_bar=progress_bar,
                                  num_cpus=num_cpus)
            for n in range(N * N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output[n].states[k].full()).T
        else:
            rho0 = qeye(N, N)
            rho0.dims = [[sqrt_N, sqrt_N], [sqrt_N, sqrt_N]]
            output = mesolve(H,
                             psi0,
                             tlist, [],
                             args,
                             options,
                             _safe_mode=False)
            if len(tlist) == 2:
                return output.states[-1]
            else:
                return output.states

    else:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)
        unitary_mode = 'single'
        N = H0.shape[0]
        dims = [H0.dims, H0.dims]

        u = np.zeros([N * N, N * N, len(tlist)], dtype=complex)

        if parallel:
            output = parallel_map(_parallel_mesolve,
                                  range(N * N),
                                  task_args=(N, H, tlist, c_op_list, args,
                                             options),
                                  progress_bar=progress_bar,
                                  num_cpus=num_cpus)
            for n in range(N * N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output[n].states[k].full()).T
        else:
            progress_bar.start(N * N)
            for n in range(N * N):
                progress_bar.update(n)
                col_idx, row_idx = np.unravel_index(n, (N, N))
                rho0 = Qobj(
                    sp.csr_matrix(([1], ([row_idx], [col_idx])),
                                  shape=(N, N),
                                  dtype=complex))
                output = mesolve(H,
                                 rho0,
                                 tlist,
                                 c_op_list, [],
                                 args,
                                 options,
                                 _safe_mode=False)
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output.states[k].full()).T
            progress_bar.finished()

    if len(tlist) == 2:
        if unitary_mode == 'batch':
            return Qobj(u[-1], dims=dims)
        else:
            return Qobj(u[:, :, 1], dims=dims)
    else:
        if unitary_mode == 'batch':
            return np.array([Qobj(u[k], dims=dims) for k in range(len(tlist))],
                            dtype=object)
        else:
            return np.array(
                [Qobj(u[:, :, k], dims=dims) for k in range(len(tlist))],
                dtype=object)
Пример #5
0
args = {'w': omega}

freezing_pts = jn_zeros(0, 4)

H0 = -2.0 * q**2 + h0 * (1. - 4. * q**2).sqrtm() * p.cosm()


def floquet_esys(ampl):
    H1 = ampl * (1. - 4. * q**2).sqrtm() * p.cosm()
    H = [H0, [H1, lambda t, args: np.cos(args["w"] * t)]]
    f_modes_0, f_energies = floquet_modes(H, time_period, args, True)
    return f_energies


ampls = np.linspace(1.0, 250.0, 300)
quasi_evals = parallel_map(floquet_esys, ampls, progress_bar=True)
quasi_evals = np.array(quasi_evals)

np.savetxt("N_%d_w_%1.3lf.csv" % (N, omega),
           np.vstack((ampls, quasi_evals.T)).T,
           delimiter=',')

for i in range(N):
    # plt.scatter(ampls/args["w"], quasi_evals[:, i], s=0.1, c='b')
    plt.plot(4.0 * ampls / args["w"], quasi_evals[:, i], c='b')

for pt in freezing_pts:
    plt.axvline(x=pt, color='gray', linestyle="--")

plt.xlabel(r'$4h\;N/\omega$')
Пример #6
0
def propagator(H, t, c_op_list=[], args={}, options=None,
               parallel=False, progress_bar=None, **kwargs):
    """
    Calculate the propagator U(t) for the density matrix or wave function such
    that :math:`\psi(t) = U(t)\psi(0)` or
    :math:`\\rho_{\mathrm vec}(t) = U(t) \\rho_{\mathrm vec}(0)`
    where :math:`\\rho_{\mathrm vec}` is the vector representation of the
    density matrix.

    Parameters
    ----------
    H : qobj or list
        Hamiltonian as a Qobj instance of a nested list of Qobjs and
        coefficients in the list-string or list-function format for
        time-dependent Hamiltonians (see description in :func:`qutip.mesolve`).

    t : float or array-like
        Time or list of times for which to evaluate the propagator.

    c_op_list : list
        List of qobj collapse operators.

    args : list/array/dictionary
        Parameters to callback functions for time-dependent Hamiltonians and
        collapse operators.

    options : :class:`qutip.Options`
        with options for the ODE solver.

    parallel : bool {False, True}
        Run the propagator in parallel mode.
    
    progress_bar: BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation. By default no progress bar
        is used, and if set to True a TextProgressBar will be used.

    Returns
    -------
     a : qobj
        Instance representing the propagator :math:`U(t)`.

    """
    
    kw = _default_kwargs()
    if 'num_cpus' in kwargs:
        num_cpus = kwargs['num_cpus']
    else:
        num_cpus = kw['num_cpus']
    
    if progress_bar is None:
        progress_bar = BaseProgressBar()
    elif progress_bar is True:
        progress_bar = TextProgressBar()

    if options is None:
        options = Options()
        options.rhs_reuse = True
        rhs_clear()

    if isinstance(t, (int, float, np.integer, np.floating)):
        tlist = [0, t]
    else:
        tlist = t

    td_type = _td_format_check(H, c_op_list, solver='me')[2]
    if td_type > 0:
        rhs_generate(H, c_op_list, args=args, options=options)
        
    if isinstance(H, (types.FunctionType, types.BuiltinFunctionType,
                      functools.partial)):
        H0 = H(0.0, args)
    elif isinstance(H, list):
        H0 = H[0][0] if isinstance(H[0], list) else H[0]
    else:
        H0 = H

    if len(c_op_list) == 0 and H0.isoper:
        # calculate propagator for the wave function

        N = H0.shape[0]
        dims = H0.dims
        u = np.zeros([N, N, len(tlist)], dtype=complex)
        
        if parallel:
            output = parallel_map(_parallel_sesolve,range(N),
                    task_args=(N,H,tlist,args,options),
                    progress_bar=progress_bar, num_cpus=num_cpus)
            for n in range(N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = output[n].states[k].full().T 
        else:
            progress_bar.start(N)
            for n in range(0, N):
                progress_bar.update(n)
                psi0 = basis(N, n)
                output = sesolve(H, psi0, tlist, [], args, options)
                for k, t in enumerate(tlist):
                    u[:, n, k] = output.states[k].full().T
            progress_bar.finished()

        # todo: evolving a batch of wave functions:
        # psi_0_list = [basis(N, n) for n in range(N)]
        # psi_t_list = mesolve(H, psi_0_list, [0, t], [], [], args, options)
        # for n in range(0, N):
        #    u[:,n] = psi_t_list[n][1].full().T

    elif len(c_op_list) == 0 and H0.issuper:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)

        N = H0.shape[0]
        sqrt_N = int(np.sqrt(N))
        dims = H0.dims
        
        u = np.zeros([N, N, len(tlist)], dtype=complex)

        if parallel:
            output = parallel_map(_parallel_mesolve,range(N * N),
                    task_args=(sqrt_N,H,tlist,c_op_list,args,options),
                    progress_bar=progress_bar, num_cpus=num_cpus)
            for n in range(N * N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output[n].states[k].full()).T
        else:
            progress_bar.start(N)
            for n in range(0, N):
                progress_bar.update(n)
                col_idx, row_idx = np.unravel_index(n,(sqrt_N,sqrt_N))
                rho0 = Qobj(sp.csr_matrix(([1],([row_idx],[col_idx])), shape=(sqrt_N,sqrt_N), dtype=complex))
                output = mesolve(H, rho0, tlist, [], [], args, options)
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output.states[k].full()).T
            progress_bar.finished()

    else:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)

        N = H0.shape[0]
        dims = [H0.dims, H0.dims]

        u = np.zeros([N * N, N * N, len(tlist)], dtype=complex)
        
        if parallel:
            output = parallel_map(_parallel_mesolve,range(N * N),
                    task_args=(N,H,tlist,c_op_list,args,options),
                    progress_bar=progress_bar, num_cpus=num_cpus)
            for n in range(N * N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output[n].states[k].full()).T
        else:
            progress_bar.start(N * N)
            for n in range(N * N):
                progress_bar.update(n)
                col_idx, row_idx = np.unravel_index(n,(N,N))
                rho0 = Qobj(sp.csr_matrix(([1],([row_idx],[col_idx])), shape=(N,N), dtype=complex))
                output = mesolve(H, rho0, tlist, c_op_list, [], args, options)
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output.states[k].full()).T
            progress_bar.finished()

    if len(tlist) == 2:
        return Qobj(u[:, :, 1], dims=dims)
    else:
        return np.array([Qobj(u[:, :, k], dims=dims) for k in range(len(tlist))], dtype=object)
Пример #7
0
def propagator(H,
               t,
               c_op_list=[],
               args={},
               options=None,
               parallel=False,
               progress_bar=None,
               **kwargs):
    """
    Calculate the propagator U(t) for the density matrix or wave function such
    that :math:`\psi(t) = U(t)\psi(0)` or
    :math:`\\rho_{\mathrm vec}(t) = U(t) \\rho_{\mathrm vec}(0)`
    where :math:`\\rho_{\mathrm vec}` is the vector representation of the
    density matrix.

    Parameters
    ----------
    H : qobj or list
        Hamiltonian as a Qobj instance of a nested list of Qobjs and
        coefficients in the list-string or list-function format for
        time-dependent Hamiltonians (see description in :func:`qutip.mesolve`).

    t : float or array-like
        Time or list of times for which to evaluate the propagator.

    c_op_list : list
        List of qobj collapse operators.

    args : list/array/dictionary
        Parameters to callback functions for time-dependent Hamiltonians and
        collapse operators.

    options : :class:`qutip.Options`
        with options for the ODE solver.

    parallel : bool {False, True}
        Run the propagator in parallel mode.
    
    progress_bar: BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation. By default no progress bar
        is used, and if set to True a TextProgressBar will be used.

    Returns
    -------
     a : qobj
        Instance representing the propagator :math:`U(t)`.

    """
    kw = _default_kwargs()
    if 'num_cpus' in kwargs:
        num_cpus = kwargs['num_cpus']
    else:
        num_cpus = kw['num_cpus']

    if progress_bar is None:
        progress_bar = BaseProgressBar()
    elif progress_bar is True:
        progress_bar = TextProgressBar()

    if options is None:
        options = Options()
        options.rhs_reuse = True
        rhs_clear()

    if isinstance(t, (int, float, np.integer, np.floating)):
        tlist = [0, t]
    else:
        tlist = t

    td_type = _td_format_check(H, c_op_list, solver='me')[2]
    if td_type > 0:
        rhs_generate(H, c_op_list, args=args, options=options)

    if isinstance(
            H,
        (types.FunctionType, types.BuiltinFunctionType, functools.partial)):
        H0 = H(0.0, args)
    elif isinstance(H, list):
        H0 = H[0][0] if isinstance(H[0], list) else H[0]
    else:
        H0 = H

    if len(c_op_list) == 0 and H0.isoper:
        # calculate propagator for the wave function

        N = H0.shape[0]
        dims = H0.dims
        u = np.zeros([N, N, len(tlist)], dtype=complex)

        if parallel:
            output = parallel_map(_parallel_sesolve,
                                  range(N),
                                  task_args=(N, H, tlist, args, options),
                                  progress_bar=progress_bar,
                                  num_cpus=num_cpus)
            for n in range(N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = output[n].states[k].full().T
        else:
            progress_bar.start(N)
            for n in range(0, N):
                progress_bar.update(n)
                psi0 = basis(N, n)
                output = sesolve(H,
                                 psi0,
                                 tlist, [],
                                 args,
                                 options,
                                 _safe_mode=False)
                for k, t in enumerate(tlist):
                    u[:, n, k] = output.states[k].full().T
            progress_bar.finished()

        # todo: evolving a batch of wave functions:
        # psi_0_list = [basis(N, n) for n in range(N)]
        # psi_t_list = mesolve(H, psi_0_list, [0, t], [], [], args, options)
        # for n in range(0, N):
        #    u[:,n] = psi_t_list[n][1].full().T

    elif len(c_op_list) == 0 and H0.issuper:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)

        N = H0.shape[0]
        sqrt_N = int(np.sqrt(N))
        dims = H0.dims

        u = np.zeros([N, N, len(tlist)], dtype=complex)

        if parallel:
            output = parallel_map(_parallel_mesolve,
                                  range(N * N),
                                  task_args=(sqrt_N, H, tlist, c_op_list, args,
                                             options),
                                  progress_bar=progress_bar,
                                  num_cpus=num_cpus)
            for n in range(N * N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output[n].states[k].full()).T
        else:
            progress_bar.start(N)
            for n in range(0, N):
                progress_bar.update(n)
                col_idx, row_idx = np.unravel_index(n, (sqrt_N, sqrt_N))
                rho0 = Qobj(
                    sp.csr_matrix(([1], ([row_idx], [col_idx])),
                                  shape=(sqrt_N, sqrt_N),
                                  dtype=complex))
                output = mesolve(H,
                                 rho0,
                                 tlist, [], [],
                                 args,
                                 options,
                                 _safe_mode=False)
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output.states[k].full()).T
            progress_bar.finished()

    else:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)

        N = H0.shape[0]
        dims = [H0.dims, H0.dims]

        u = np.zeros([N * N, N * N, len(tlist)], dtype=complex)

        if parallel:
            output = parallel_map(_parallel_mesolve,
                                  range(N * N),
                                  task_args=(N, H, tlist, c_op_list, args,
                                             options),
                                  progress_bar=progress_bar,
                                  num_cpus=num_cpus)
            for n in range(N * N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output[n].states[k].full()).T
        else:
            progress_bar.start(N * N)
            for n in range(N * N):
                progress_bar.update(n)
                col_idx, row_idx = np.unravel_index(n, (N, N))
                rho0 = Qobj(
                    sp.csr_matrix(([1], ([row_idx], [col_idx])),
                                  shape=(N, N),
                                  dtype=complex))
                output = mesolve(H,
                                 rho0,
                                 tlist,
                                 c_op_list, [],
                                 args,
                                 options,
                                 _safe_mode=False)
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output.states[k].full()).T
            progress_bar.finished()

    if len(tlist) == 2:
        return Qobj(u[:, :, 1], dims=dims)
    else:
        return np.array(
            [Qobj(u[:, :, k], dims=dims) for k in range(len(tlist))],
            dtype=object)
Пример #8
0
def tran_spectrum(
    Mol: molSystem,
    delta_max: float,
    delta_step: float,
    sampletlist: List[float],
    method="theory",
    calculation="parallel",
    save_data=False,
):
    """
    input:
    an instance of molSystem (neglect the detuning setting)
    delta_max: Unit: MHz. positive maximum detuning frequency. 
    delta_step: Unit: MHz. Increasing step of detuning frequency from zero
    sampletlist: The list of sampling time to draw spectrum
    output:
    transmission spectrum data
    """
    if Mol.tlist[-1] < sampletlist[-1]:
        raise ValueError("tlist range does not cover sampletlist!")
    if method == "simulation" or method == "theory":
        print("The way to derive transmission spectrum is " + method)
    else:
        raise ValueError("method value should be 'simulation' or 'theory'")
    if calculation == "serial" or calculation == "parallel":
        print("The way to derive transmission spectrum is " + calculation)
    else:
        raise ValueError("calculation value should be 'serial' or 'parallel'")

    deltalist = arange(0, delta_max, delta_step)

    if calculation == "serial":
        # serial version
        spectrum_data = []
        for delta in deltalist:
            spectrum_data.append(
                _helper(2 * pi * delta, Mol, sampletlist, method))
    elif calculation == "parallel":
        # parallel version
        spectrum_data = parallel_map(
            _helper,
            2 * pi * array(deltalist),  # convert the unit to Mega rad/s
            task_kwargs=dict(Mol_original=Mol,
                             sampletlist=sampletlist,
                             method=method),
            progress_bar=True,
        )

    if save_data:
        save(Mol._path + "tran_spectrum.npy", spectrum_data)
        save(Mol._path + "deltalist.npy", array(deltalist))
        save(Mol._path + "sampletlist.npy", array(sampletlist))

    # draw graph
    delta_minus = -copy(deltalist)
    delta_data = concatenate([flip(delta_minus), deltalist])
    spec_minus = flip(copy(spectrum_data), axis=0)
    spec_data = transpose(concatenate([spec_minus, spectrum_data]))

    fig, axes = plt.subplots(1, 1, figsize=(10, 8))

    for t_idx, spec in enumerate(spec_data):
        axes.plot(delta_data, spec, label=str(sampletlist[t_idx]) + r"$\mu s$")

    axes.legend(loc=0)
    if not exists(Mol._path + "figures"):  # detect figures folder
        makedirs(Mol._path + "figures")
    plt.savefig(Mol._path + "figures/Transmission_Spectrum.png")