def get_result(self, ntraj=[]): # Store results in the Result object if not ntraj: ntraj = [self.num_traj] elif not isinstance(ntraj, list): ntraj = [ntraj] output = Result() output.solver = 'mcsolve' output.seeds = self.seeds options = self.options output.options = options if options.steady_state_average: output.states = self.steady_state elif options.average_states and options.store_states: output.states = self.states elif options.store_states: output.states = self.runs_states if options.store_final_state: if options.average_states: output.final_state = self.final_state else: output.final_state = self.runs_final_states if options.average_expect: output.expect = [self.expect_traj_avg(n) for n in ntraj] if len(output.expect) == 1: output.expect = output.expect[0] else: output.expect = self.runs_expect # simulation parameters output.times = self.tlist output.num_expect = self.e_ops.e_num output.num_collapse = len(self.ss.td_c_ops) output.ntraj = self.num_traj output.col_times = self.collapse_times output.col_which = self.collapse_which return output
def mcsolve_f90(H, psi0, tlist, c_ops, e_ops, ntraj=None, options=Options(), sparse_dms=True, serial=False, ptrace_sel=[], calc_entropy=False): """ Monte-Carlo wave function solver with fortran 90 backend. Usage is identical to qutip.mcsolve, for problems without explicit time-dependence, and with some optional input: Parameters ---------- H : qobj System Hamiltonian. psi0 : qobj Initial state vector tlist : array_like Times at which results are recorded. ntraj : int Number of trajectories to run. c_ops : array_like ``list`` or ``array`` of collapse operators. e_ops : array_like ``list`` or ``array`` of operators for calculating expectation values. options : Options Instance of solver options. sparse_dms : boolean If averaged density matrices are returned, they will be stored as sparse (Compressed Row Format) matrices during computation if sparse_dms = True (default), and dense matrices otherwise. Dense matrices might be preferable for smaller systems. serial : boolean If True (default is False) the solver will not make use of the multiprocessing module, and simply run in serial. ptrace_sel: list This optional argument specifies a list of components to keep when returning a partially traced density matrix. This can be convenient for large systems where memory becomes a problem, but you are only interested in parts of the density matrix. calc_entropy : boolean If ptrace_sel is specified, calc_entropy=True will have the solver return the averaged entropy over trajectories in results.entropy. This can be interpreted as a measure of entanglement. See Phys. Rev. Lett. 93, 120408 (2004), Phys. Rev. A 86, 022310 (2012). Returns ------- results : Result Object storing all results from simulation. """ if ntraj is None: ntraj = options.ntraj if psi0.type != 'ket': raise Exception("Initial state must be a state vector.") config.options = options # set num_cpus to the value given in qutip.settings # if none in Options if not config.options.num_cpus: config.options.num_cpus = qutip.settings.num_cpus # set initial value data if options.tidy: config.psi0 = psi0.tidyup(options.atol).full() else: config.psi0 = psi0.full() config.psi0_dims = psi0.dims config.psi0_shape = psi0.shape # set general items config.tlist = tlist if isinstance(ntraj, (list, np.ndarray)): raise Exception("ntraj as list argument is not supported.") else: config.ntraj = ntraj # ntraj_list = [ntraj] # set norm finding constants config.norm_tol = options.norm_tol config.norm_steps = options.norm_steps if not options.rhs_reuse: config.soft_reset() # no time dependence config.tflag = 0 # check for collapse operators if len(c_ops) > 0: config.cflag = 1 else: config.cflag = 0 # Configure data _mc_data_config(H, psi0, [], c_ops, [], [], e_ops, options, config) # Load Monte Carlo class mc = _MC_class() # Set solver type if (options.method == 'adams'): mc.mf = 10 elif (options.method == 'bdf'): mc.mf = 22 else: if debug: print('Unrecognized method for ode solver, using "adams".') mc.mf = 10 # store ket and density matrix dims and shape for convenience mc.psi0_dims = psi0.dims mc.psi0_shape = psi0.shape mc.dm_dims = (psi0 * psi0.dag()).dims mc.dm_shape = (psi0 * psi0.dag()).shape # use sparse density matrices during computation? mc.sparse_dms = sparse_dms # run in serial? mc.serial_run = serial or (ntraj == 1) # are we doing a partial trace for returned states? mc.ptrace_sel = ptrace_sel if (ptrace_sel != []): if debug: print("ptrace_sel set to " + str(ptrace_sel)) print("We are using dense density matrices during computation " + "when performing partial trace. Setting sparse_dms = False") print("This feature is experimental.") mc.sparse_dms = False mc.dm_dims = psi0.ptrace(ptrace_sel).dims mc.dm_shape = psi0.ptrace(ptrace_sel).shape if (calc_entropy): if (ptrace_sel == []): if debug: print("calc_entropy = True, but ptrace_sel = []. Please set " + "a list of components to keep when calculating average" + " entropy of reduced density matrix in ptrace_sel. " + "Setting calc_entropy = False.") calc_entropy = False mc.calc_entropy = calc_entropy # construct output Result object output = Result() # Run mc.run() output.states = mc.sol.states output.expect = mc.sol.expect output.col_times = mc.sol.col_times output.col_which = mc.sol.col_which if (hasattr(mc.sol, 'entropy')): output.entropy = mc.sol.entropy output.solver = 'Fortran 90 Monte Carlo solver' # simulation parameters output.times = config.tlist output.num_expect = config.e_num output.num_collapse = config.c_num output.ntraj = config.ntraj return output
def evolve_serial(self, args): if debug: print(inspect.stack()[0][3] + ":" + str(os.getpid())) # run ntraj trajectories for one process via fortran # get args queue, ntraj, instanceno, rngseed = args # initialize the problem in fortran _init_tlist() _init_psi0() if (self.ptrace_sel != []): _init_ptrace_stuff(self.ptrace_sel) _init_hamilt() if (config.c_num != 0): _init_c_ops() if (config.e_num != 0): _init_e_ops() # set options qtf90.qutraj_run.n_c_ops = config.c_num qtf90.qutraj_run.n_e_ops = config.e_num qtf90.qutraj_run.ntraj = ntraj qtf90.qutraj_run.unravel_type = self.unravel_type qtf90.qutraj_run.average_states = config.options.average_states qtf90.qutraj_run.average_expect = config.options.average_expect qtf90.qutraj_run.init_result(config.psi0_shape[0], config.options.atol, config.options.rtol, mf=self.mf, norm_steps=config.norm_steps, norm_tol=config.norm_tol) # set optional arguments qtf90.qutraj_run.order = config.options.order qtf90.qutraj_run.nsteps = config.options.nsteps qtf90.qutraj_run.first_step = config.options.first_step qtf90.qutraj_run.min_step = config.options.min_step qtf90.qutraj_run.max_step = config.options.max_step qtf90.qutraj_run.norm_steps = config.options.norm_steps qtf90.qutraj_run.norm_tol = config.options.norm_tol # use sparse density matrices during computation? qtf90.qutraj_run.rho_return_sparse = self.sparse_dms # calculate entropy of reduced density matrice? qtf90.qutraj_run.calc_entropy = self.calc_entropy # run show_progress = 1 if debug else 0 qtf90.qutraj_run.evolve(instanceno, rngseed, show_progress) # construct Result instance sol = Result() sol.ntraj = ntraj # sol.col_times = qtf90.qutraj_run.col_times # sol.col_which = qtf90.qutraj_run.col_which-1 sol.col_times, sol.col_which = self.get_collapses(ntraj) if (config.e_num == 0): sol.states = self.get_states(len(config.tlist), ntraj) else: sol.expect = self.get_expect(len(config.tlist), ntraj) if (self.calc_entropy): sol.entropy = self.get_entropy(len(config.tlist)) if (not self.serial_run): # put to queue queue.put(sol) queue.join() # deallocate stuff # finalize() return sol
def mcsolve(H, psi0, tlist, c_ops, e_ops, ntraj=None, args={}, options=None, progress_bar=True, map_func=None, map_kwargs=None): """Monte Carlo evolution of a state vector :math:`|\psi \\rangle` for a given Hamiltonian and sets of collapse operators, and possibly, operators for calculating expectation values. Options for the underlying ODE solver are given by the Options class. mcsolve supports time-dependent Hamiltonians and collapse operators using either Python functions of strings to represent time-dependent coefficients. Note that, the system Hamiltonian MUST have at least one constant term. As an example of a time-dependent problem, consider a Hamiltonian with two terms ``H0`` and ``H1``, where ``H1`` is time-dependent with coefficient ``sin(w*t)``, and collapse operators ``C0`` and ``C1``, where ``C1`` is time-dependent with coeffcient ``exp(-a*t)``. Here, w and a are constant arguments with values ``W`` and ``A``. Using the Python function time-dependent format requires two Python functions, one for each collapse coefficient. Therefore, this problem could be expressed as:: def H1_coeff(t,args): return sin(args['w']*t) def C1_coeff(t,args): return exp(-args['a']*t) H = [H0, [H1, H1_coeff]] c_ops = [C0, [C1, C1_coeff]] args={'a': A, 'w': W} or in String (Cython) format we could write:: H = [H0, [H1, 'sin(w*t)']] c_ops = [C0, [C1, 'exp(-a*t)']] args={'a': A, 'w': W} Constant terms are preferably placed first in the Hamiltonian and collapse operator lists. Parameters ---------- H : :class:`qutip.Qobj` System Hamiltonian. psi0 : :class:`qutip.Qobj` Initial state vector tlist : array_like Times at which results are recorded. ntraj : int Number of trajectories to run. c_ops : array_like single collapse operator or ``list`` or ``array`` of collapse operators. e_ops : array_like single operator or ``list`` or ``array`` of operators for calculating expectation values. args : dict Arguments for time-dependent Hamiltonian and collapse operator terms. options : Options Instance of ODE solver options. progress_bar: BaseProgressBar Optional instance of BaseProgressBar, or a subclass thereof, for showing the progress of the simulation. Set to None to disable the progress bar. map_func: function A map function for managing the calls to the single-trajactory solver. map_kwargs: dictionary Optional keyword arguments to the map_func function. Returns ------- results : :class:`qutip.solver.Result` Object storing all results from the simulation. .. note:: It is possible to reuse the random number seeds from a previous run of the mcsolver by passing the output Result object seeds via the Options class, i.e. Options(seeds=prev_result.seeds). """ if debug: print(inspect.stack()[0][3]) if options is None: options = Options() if ntraj is None: ntraj = options.ntraj config.map_func = map_func if map_func is not None else parallel_map config.map_kwargs = map_kwargs if map_kwargs is not None else {} if not psi0.isket: raise Exception("Initial state must be a state vector.") if isinstance(c_ops, Qobj): c_ops = [c_ops] if isinstance(e_ops, Qobj): e_ops = [e_ops] if isinstance(e_ops, dict): e_ops_dict = e_ops e_ops = [e for e in e_ops.values()] else: e_ops_dict = None config.options = options if progress_bar: if progress_bar is True: config.progress_bar = TextProgressBar() else: config.progress_bar = progress_bar else: config.progress_bar = BaseProgressBar() # set num_cpus to the value given in qutip.settings if none in Options if not config.options.num_cpus: config.options.num_cpus = qutip.settings.num_cpus if config.options.num_cpus == 1: # fallback on serial_map if num_cpu == 1, since there is no # benefit of starting multiprocessing in this case config.map_func = serial_map # set initial value data if options.tidy: config.psi0 = psi0.tidyup(options.atol).full().ravel() else: config.psi0 = psi0.full().ravel() config.psi0_dims = psi0.dims config.psi0_shape = psi0.shape # set options on ouput states if config.options.steady_state_average: config.options.average_states = True # set general items config.tlist = tlist if isinstance(ntraj, (list, np.ndarray)): config.ntraj = np.sort(ntraj)[-1] else: config.ntraj = ntraj # set norm finding constants config.norm_tol = options.norm_tol config.norm_steps = options.norm_steps # convert array based time-dependence to string format H, c_ops, args = _td_wrap_array_str(H, c_ops, args, tlist) # SETUP ODE DATA IF NONE EXISTS OR NOT REUSING # -------------------------------------------- if not options.rhs_reuse or not config.tdfunc: # reset config collapse and time-dependence flags to default values config.soft_reset() # check for type of time-dependence (if any) time_type, h_stuff, c_stuff = _td_format_check(H, c_ops, 'mc') c_terms = len(c_stuff[0]) + len(c_stuff[1]) + len(c_stuff[2]) # set time_type for use in multiprocessing config.tflag = time_type # check for collapse operators if c_terms > 0: config.cflag = 1 else: config.cflag = 0 # Configure data _mc_data_config(H, psi0, h_stuff, c_ops, c_stuff, args, e_ops, options, config) # compile and load cython functions if necessary _mc_func_load(config) else: # setup args for new parameters when rhs_reuse=True and tdfunc is given # string based if config.tflag in [1, 10, 11]: if any(args): config.c_args = [] arg_items = list(args.items()) for k in range(len(arg_items)): config.c_args.append(arg_items[k][1]) # function based elif config.tflag in [2, 3, 20, 22]: config.h_func_args = args # load monte carlo class mc = _MC(config) # Run the simulation mc.run() # Remove RHS cython file if necessary if not options.rhs_reuse and config.tdname: _cython_build_cleanup(config.tdname) # AFTER MCSOLVER IS DONE # ---------------------- # Store results in the Result object output = Result() output.solver = 'mcsolve' output.seeds = config.options.seeds # state vectors if (mc.psi_out is not None and config.options.average_states and config.cflag and ntraj != 1): output.states = parfor(_mc_dm_avg, mc.psi_out.T) elif mc.psi_out is not None: output.states = mc.psi_out # expectation values if (mc.expect_out is not None and config.cflag and config.options.average_expect): # averaging if multiple trajectories if isinstance(ntraj, int): output.expect = [np.mean(np.array([mc.expect_out[nt][op] for nt in range(ntraj)], dtype=object), axis=0) for op in range(config.e_num)] elif isinstance(ntraj, (list, np.ndarray)): output.expect = [] for num in ntraj: expt_data = np.mean(mc.expect_out[:num], axis=0) data_list = [] if any([not op.isherm for op in e_ops]): for k in range(len(e_ops)): if e_ops[k].isherm: data_list.append(np.real(expt_data[k])) else: data_list.append(expt_data[k]) else: data_list = [data for data in expt_data] output.expect.append(data_list) else: # no averaging for single trajectory or if average_expect flag # (Options) is off if mc.expect_out is not None: output.expect = mc.expect_out # simulation parameters output.times = config.tlist output.num_expect = config.e_num output.num_collapse = config.c_num output.ntraj = config.ntraj output.col_times = mc.collapse_times_out output.col_which = mc.which_op_out if e_ops_dict: output.expect = {e: output.expect[n] for n, e in enumerate(e_ops_dict.keys())} return output
def mcsolve(H, psi0, tlist, c_ops, e_ops, ntraj=None, args={}, options=Options()): """Monte-Carlo evolution of a state vector :math:`|\psi \\rangle` for a given Hamiltonian and sets of collapse operators, and possibly, operators for calculating expectation values. Options for the underlying ODE solver are given by the Options class. mcsolve supports time-dependent Hamiltonians and collapse operators using either Python functions of strings to represent time-dependent coefficients. Note that, the system Hamiltonian MUST have at least one constant term. As an example of a time-dependent problem, consider a Hamiltonian with two terms ``H0`` and ``H1``, where ``H1`` is time-dependent with coefficient ``sin(w*t)``, and collapse operators ``C0`` and ``C1``, where ``C1`` is time-dependent with coeffcient ``exp(-a*t)``. Here, w and a are constant arguments with values ``W`` and ``A``. Using the Python function time-dependent format requires two Python functions, one for each collapse coefficient. Therefore, this problem could be expressed as:: def H1_coeff(t,args): return sin(args['w']*t) def C1_coeff(t,args): return exp(-args['a']*t) H=[H0,[H1,H1_coeff]] c_op_list=[C0,[C1,C1_coeff]] args={'a':A,'w':W} or in String (Cython) format we could write:: H=[H0,[H1,'sin(w*t)']] c_op_list=[C0,[C1,'exp(-a*t)']] args={'a':A,'w':W} Constant terms are preferably placed first in the Hamiltonian and collapse operator lists. Parameters ---------- H : qobj System Hamiltonian. psi0 : qobj Initial state vector tlist : array_like Times at which results are recorded. ntraj : int Number of trajectories to run. c_ops : array_like single collapse operator or ``list`` or ``array`` of collapse operators. e_ops : array_like single operator or ``list`` or ``array`` of operators for calculating expectation values. args : dict Arguments for time-dependent Hamiltonian and collapse operator terms. options : Options Instance of ODE solver options. Returns ------- results : Result Object storing all results from simulation. """ if debug: print(inspect.stack()[0][3]) if ntraj is None: ntraj = options.ntraj if not psi0.isket: raise Exception("Initial state must be a state vector.") if isinstance(c_ops, Qobj): c_ops = [c_ops] if isinstance(e_ops, Qobj): e_ops = [e_ops] if isinstance(e_ops, dict): e_ops_dict = e_ops e_ops = [e for e in e_ops.values()] else: e_ops_dict = None config.options = options if isinstance(ntraj, list): config.progress_bar = TextProgressBar(max(ntraj)) else: config.progress_bar = TextProgressBar(ntraj) # set num_cpus to the value given in qutip.settings if none in Options if not config.options.num_cpus: config.options.num_cpus = qutip.settings.num_cpus # set initial value data if options.tidy: config.psi0 = psi0.tidyup(options.atol).full().ravel() else: config.psi0 = psi0.full().ravel() config.psi0_dims = psi0.dims config.psi0_shape = psi0.shape # set options on ouput states if config.options.steady_state_average: config.options.average_states = True # set general items config.tlist = tlist if isinstance(ntraj, (list, ndarray)): config.ntraj = sort(ntraj)[-1] else: config.ntraj = ntraj # set norm finding constants config.norm_tol = options.norm_tol config.norm_steps = options.norm_steps # convert array based time-dependence to string format H, c_ops, args = _td_wrap_array_str(H, c_ops, args, tlist) # ---------------------------------------------- # SETUP ODE DATA IF NONE EXISTS OR NOT REUSING # ---------------------------------------------- if (not options.rhs_reuse) or (not config.tdfunc): # reset config collapse and time-dependence flags to default values config.soft_reset() # check for type of time-dependence (if any) time_type, h_stuff, c_stuff = _td_format_check(H, c_ops, "mc") h_terms = len(h_stuff[0]) + len(h_stuff[1]) + len(h_stuff[2]) c_terms = len(c_stuff[0]) + len(c_stuff[1]) + len(c_stuff[2]) # set time_type for use in multiprocessing config.tflag = time_type # check for collapse operators if c_terms > 0: config.cflag = 1 else: config.cflag = 0 # Configure data _mc_data_config(H, psi0, h_stuff, c_ops, c_stuff, args, e_ops, options, config) # compile and load cython functions if necessary _mc_func_load(config) else: # setup args for new parameters when rhs_reuse=True and tdfunc is given # string based if config.tflag in array([1, 10, 11]): if any(args): config.c_args = [] arg_items = args.items() for k in range(len(args)): config.c_args.append(arg_items[k][1]) # function based elif config.tflag in array([2, 3, 20, 22]): config.h_func_args = args # load monte-carlo class mc = _MC_class(config) # RUN THE SIMULATION mc.run() # remove RHS cython file if necessary if not options.rhs_reuse and config.tdname: try: os.remove(config.tdname + ".pyx") except: pass # AFTER MCSOLVER IS DONE -------------------------------------- # ------- COLLECT AND RETURN OUTPUT DATA IN ODEDATA OBJECT -------------- output = Result() output.solver = "mcsolve" # state vectors if mc.psi_out is not None and config.options.average_states and config.cflag and ntraj != 1: output.states = parfor(_mc_dm_avg, mc.psi_out.T) elif mc.psi_out is not None: output.states = mc.psi_out # expectation values elif mc.expect_out is not None and config.cflag and config.options.average_expect: # averaging if multiple trajectories if isinstance(ntraj, int): output.expect = [mean([mc.expect_out[nt][op] for nt in range(ntraj)], axis=0) for op in range(config.e_num)] elif isinstance(ntraj, (list, ndarray)): output.expect = [] for num in ntraj: expt_data = mean(mc.expect_out[:num], axis=0) data_list = [] if any([not op.isherm for op in e_ops]): for k in range(len(e_ops)): if e_ops[k].isherm: data_list.append(np.real(expt_data[k])) else: data_list.append(expt_data[k]) else: data_list = [data for data in expt_data] output.expect.append(data_list) else: # no averaging for single trajectory or if average_states flag # (Options) is off if mc.expect_out is not None: output.expect = mc.expect_out # simulation parameters output.times = config.tlist output.num_expect = config.e_num output.num_collapse = config.c_num output.ntraj = config.ntraj output.col_times = mc.collapse_times_out output.col_which = mc.which_op_out if e_ops_dict: output.expect = {e: output.expect[n] for n, e in enumerate(e_ops_dict.keys())} return output