Пример #1
0
    def __init__(self, *args, **kwargs):
        self._shared_size = mp.Value(ctypes.c_long, 0)
        ObsDictRelabelingBuffer.__init__(self, *args, **kwargs)

        self._mp_array_info = {}
        self._shared_obs_info = {}
        self._shared_next_obs_info = {}

        for obs_key, obs_arr in self._obs.items():
            ctype = ctypes.c_float
            if obs_arr.dtype == np.uint8:
                ctype = ctypes.c_uint8

            self._shared_obs_info[obs_key] = (
                mp.Array(ctype, obs_arr.size),
                obs_arr.dtype,
                obs_arr.shape,
            )
            self._shared_next_obs_info[obs_key] = (
                mp.Array(ctype, obs_arr.size),
                obs_arr.dtype,
                obs_arr.shape,
            )

            self._obs[obs_key] = to_np(*self._shared_obs_info[obs_key])
            self._next_obs[obs_key] = to_np(
                *self._shared_next_obs_info[obs_key])
        self._register_mp_array("_actions")
        self._register_mp_array("_terminals")
def her_twin_sac_experiment(variant):
    env = variant['env_class'](**variant['env_kwargs'])
    observation_key = variant.get('observation_key', 'observation')
    desired_goal_key = variant.get('desired_goal_key', 'desired_goal')
    replay_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        **variant['replay_buffer_kwargs']
    )
    obs_dim = env.observation_space.spaces['observation'].low.size
    action_dim = env.action_space.low.size
    goal_dim = env.observation_space.spaces['desired_goal'].low.size
    if variant['normalize']:
        env = NormalizedBoxEnv(env)
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim + goal_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim + goal_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    vf = FlattenMlp(
        input_size=obs_dim + goal_dim,
        output_size=1,
        **variant['vf_kwargs']
    )
    policy = TanhGaussianPolicy(
        obs_dim=obs_dim + goal_dim,
        action_dim=action_dim,
        **variant['policy_kwargs']
    )
    algorithm = HerTwinSac(
        env,
        qf1=qf1,
        qf2=qf2,
        vf=vf,
        policy=policy,
        replay_buffer=replay_buffer,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        **variant['algo_kwargs']
    )
    if ptu.gpu_enabled():
        qf1.to(ptu.device)
        qf2.to(ptu.device)
        vf.to(ptu.device)
        policy.to(ptu.device)
        algorithm.to(ptu.device)
    algorithm.train()
Пример #3
0
def state_td3bc_experiment(variant):
    env = variant['env_class'](**variant['env_kwargs'])
    env = ImageEnv(
        env,
        recompute_reward=False,
        transpose=True,
        image_length=3 * 84 * 84,
        reward_type="not_used",
        # init_camera=sawyer_pusher_camera_upright_v2,
    )

    expl_env = env  # variant['env_class'](**variant['env_kwargs'])
    eval_env = env  # variant['env_class'](**variant['env_kwargs'])

    observation_key = 'state_observation'
    desired_goal_key = 'state_desired_goal'
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    es = GaussianAndEpislonStrategy(
        action_space=expl_env.action_space,
        **variant["exploration_kwargs"],
    )
    obs_dim = expl_env.wrapped_env.observation_space.spaces[
        'observation'].low.size
    goal_dim = expl_env.wrapped_env.observation_space.spaces[
        'desired_goal'].low.size
    action_dim = expl_env.action_space.low.size
    qf1 = FlattenMlp(
        input_size=obs_dim + goal_dim + action_dim,
        output_size=1,
        # output_activation=TorchMaxClamp(0.0),
        **variant['qf_kwargs'])
    qf2 = FlattenMlp(
        input_size=obs_dim + goal_dim + action_dim,
        output_size=1,
        # output_activation=TorchMaxClamp(0.0),
        **variant['qf_kwargs'])
    target_qf1 = FlattenMlp(
        input_size=obs_dim + goal_dim + action_dim,
        output_size=1,
        # output_activation=TorchMaxClamp(0.0),
        **variant['qf_kwargs'])
    target_qf2 = FlattenMlp(
        input_size=obs_dim + goal_dim + action_dim,
        output_size=1,
        # output_activation=TorchMaxClamp(0.0),
        **variant['qf_kwargs'])
    policy = TanhMlpPolicy(input_size=obs_dim + goal_dim,
                           output_size=action_dim,
                           **variant['policy_kwargs'])
    target_policy = TanhMlpPolicy(input_size=obs_dim + goal_dim,
                                  output_size=action_dim,
                                  **variant['policy_kwargs'])
    expl_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    replay_buffer = ObsDictRelabelingBuffer(
        env=eval_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    demo_train_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    demo_test_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    td3bc_trainer = TD3BCTrainer(env=env,
                                 policy=policy,
                                 qf1=qf1,
                                 qf2=qf2,
                                 replay_buffer=replay_buffer,
                                 demo_train_buffer=demo_train_buffer,
                                 demo_test_buffer=demo_test_buffer,
                                 target_qf1=target_qf1,
                                 target_qf2=target_qf2,
                                 target_policy=target_policy,
                                 **variant['trainer_kwargs'])
    trainer = HERTrainer(td3bc_trainer)
    eval_path_collector = GoalConditionedPathCollector(
        eval_env,
        policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    expl_path_collector = GoalConditionedPathCollector(
        expl_env,
        expl_policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        **variant['algo_kwargs'])

    if variant.get("save_video", True):
        video_func = VideoSaveFunction(
            env,
            variant,
        )
        algorithm.post_train_funcs.append(video_func)

    algorithm.to(ptu.device)

    td3bc_trainer.load_demos()
    td3bc_trainer.pretrain_policy_with_bc()
    td3bc_trainer.pretrain_q_with_bc_data()

    algorithm.train()
Пример #4
0
def experiment(variant):
    expl_env = gym.make('GoalGridworld-v0')
    eval_env = gym.make('GoalGridworld-v0')

    obs_dim = expl_env.observation_space.spaces['observation'].low.size
    goal_dim = expl_env.observation_space.spaces['desired_goal'].low.size
    action_dim = expl_env.action_space.n
    qf = FlattenMlp(
        input_size=obs_dim + goal_dim,
        output_size=action_dim,
        hidden_sizes=[400, 300],
    )
    target_qf = FlattenMlp(
        input_size=obs_dim + goal_dim,
        output_size=action_dim,
        hidden_sizes=[400, 300],
    )
    eval_policy = ArgmaxDiscretePolicy(qf)
    exploration_strategy = EpsilonGreedy(
        action_space=expl_env.action_space,
    )
    expl_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=exploration_strategy,
        policy=eval_policy,
    )

    replay_buffer = ObsDictRelabelingBuffer(
        env=eval_env,
        **variant['replay_buffer_kwargs']
    )
    observation_key = 'observation'
    desired_goal_key = 'desired_goal'
    eval_path_collector = GoalConditionedPathCollector(
        eval_env,
        eval_policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    expl_path_collector = GoalConditionedPathCollector(
        expl_env,
        expl_policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    trainer = DQNTrainer(
        qf=qf,
        target_qf=target_qf,
        **variant['trainer_kwargs']
    )
    trainer = HERTrainer(trainer)
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        **variant['algo_kwargs']
    )
    algorithm.to(ptu.device)
    algorithm.train()
Пример #5
0
def experiment(variant):
    representation_size = 128
    output_classes = 20

    model_class = variant.get('model_class', TimestepPredictionModel)
    model = model_class(
        representation_size,
        # decoder_output_activation=decoder_activation,
        output_classes=output_classes,
        **variant['model_kwargs'],
    )
    # model = torch.nn.DataParallel(model)

    model_path = "/home/lerrel/data/s3doodad/facebook/models/rfeatures/multitask1/run2/id2/itr_4000.pt"
    # model = load_local_or_remote_file(model_path)
    state_dict = torch.load(model_path)
    model.load_state_dict(state_dict)
    model.to(ptu.device)

    demos = np.load("demo_v2_1.npy", allow_pickle=True)
    traj = demos[0]
    goal_image = traj["observations"][-1]["image_observation"].reshape(
        1, 3, 500, 300)
    goal_image = goal_image[:, ::-1, :, :].copy()  # flip bgr
    goal_latent = model.encoder(
        ptu.from_numpy(goal_image)).detach().cpu().numpy()
    reward_params = dict(goal_latent=goal_latent, )

    env = variant['env_class'](**variant['env_kwargs'])
    env = ImageEnv(
        env,
        recompute_reward=False,
        transpose=True,
        image_length=450000,
        reward_type="image_distance",
        # init_camera=sawyer_pusher_camera_upright_v2,
    )
    env = EncoderWrappedEnv(env, model, reward_params)

    expl_env = env  # variant['env_class'](**variant['env_kwargs'])
    eval_env = env  # variant['env_class'](**variant['env_kwargs'])

    observation_key = 'latent_observation'
    desired_goal_key = 'latent_observation'
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    es = GaussianAndEpislonStrategy(
        action_space=expl_env.action_space,
        max_sigma=.2,
        min_sigma=.2,  # constant sigma
        epsilon=.3,
    )
    obs_dim = expl_env.observation_space.spaces['observation'].low.size
    goal_dim = expl_env.observation_space.spaces['desired_goal'].low.size
    action_dim = expl_env.action_space.low.size
    qf1 = FlattenMlp(input_size=obs_dim + goal_dim + action_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    qf2 = FlattenMlp(input_size=obs_dim + goal_dim + action_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    target_qf1 = FlattenMlp(input_size=obs_dim + goal_dim + action_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    target_qf2 = FlattenMlp(input_size=obs_dim + goal_dim + action_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    policy = TanhMlpPolicy(input_size=obs_dim + goal_dim,
                           output_size=action_dim,
                           **variant['policy_kwargs'])
    target_policy = TanhMlpPolicy(input_size=obs_dim + goal_dim,
                                  output_size=action_dim,
                                  **variant['policy_kwargs'])
    expl_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    replay_buffer = ObsDictRelabelingBuffer(
        env=eval_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    trainer = TD3(policy=policy,
                  qf1=qf1,
                  qf2=qf2,
                  target_qf1=target_qf1,
                  target_qf2=target_qf2,
                  target_policy=target_policy,
                  **variant['trainer_kwargs'])
    trainer = HERTrainer(trainer)
    eval_path_collector = GoalConditionedPathCollector(
        eval_env,
        policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    expl_path_collector = GoalConditionedPathCollector(
        expl_env,
        expl_policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        **variant['algo_kwargs'])

    if variant.get("save_video", True):
        video_func = VideoSaveFunction(
            env,
            **variant["dump_video_kwargs"],
        )
        algorithm.post_train_funcs.append(video_func)

    algorithm.to(ptu.device)
    algorithm.train()
Пример #6
0
def grill_her_td3_experiment(variant):
    import railrl.samplers.rollout_functions as rf
    import railrl.torch.pytorch_util as ptu
    from railrl.data_management.obs_dict_replay_buffer import \
        ObsDictRelabelingBuffer
    from railrl.exploration_strategies.base import (
        PolicyWrappedWithExplorationStrategy
    )
    from railrl.demos.her_td3bc import HerTD3BC
    from railrl.torch.networks import FlattenMlp, TanhMlpPolicy
    grill_preprocess_variant(variant)
    env = get_envs(variant)
    es = get_exploration_strategy(variant, env)

    observation_key = variant.get('observation_key', 'latent_observation')
    desired_goal_key = variant.get('desired_goal_key', 'latent_desired_goal')
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    obs_dim = (
            env.observation_space.spaces[observation_key].low.size
            + env.observation_space.spaces[desired_goal_key].low.size
    )
    action_dim = env.action_space.low.size
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    policy = TanhMlpPolicy(
        input_size=obs_dim,
        output_size=action_dim,
        **variant['policy_kwargs']
    )
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )

    replay_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs']
    )
    demo_train_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs']
    )
    demo_test_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs']
    )

    algo_kwargs = variant['algo_kwargs']
    algo_kwargs['replay_buffer'] = replay_buffer
    base_kwargs = algo_kwargs['base_kwargs']
    base_kwargs['training_env'] = env
    base_kwargs['render'] = variant["render"]
    base_kwargs['render_during_eval'] = variant["render"]
    her_kwargs = algo_kwargs['her_kwargs']
    her_kwargs['observation_key'] = observation_key
    her_kwargs['desired_goal_key'] = desired_goal_key
    # algorithm = HerTd3(
    #     env,
    #     qf1=qf1,
    #     qf2=qf2,
    #     policy=policy,
    #     exploration_policy=exploration_policy,
    #     **variant['algo_kwargs']
    # )
    env.vae.to(ptu.device)

    algorithm = HerTD3BC(
        env,
        qf1=qf1,
        qf2=qf2,
        policy=policy,
        exploration_policy=exploration_policy,
        demo_train_buffer=demo_train_buffer,
        demo_test_buffer=demo_test_buffer,
        demo_path=variant["demo_path"],
        add_demo_latents=True,
        **variant['algo_kwargs']
    )

    if variant.get("save_video", True):
        rollout_function = rf.create_rollout_function(
            rf.multitask_rollout,
            max_path_length=algorithm.max_path_length,
            observation_key=algorithm.observation_key,
            desired_goal_key=algorithm.desired_goal_key,
        )
        video_func = get_video_save_func(
            rollout_function,
            env,
            algorithm.eval_policy,
            variant,
        )
        algorithm.post_epoch_funcs.append(video_func)

    algorithm.to(ptu.device)
    if not variant.get("do_state_exp", False):
        env.vae.to(ptu.device)

    algorithm.train()
def td3_experiment(variant):
    import railrl.samplers.rollout_functions as rf
    import railrl.torch.pytorch_util as ptu
    from railrl.data_management.obs_dict_replay_buffer import \
        ObsDictRelabelingBuffer
    from railrl.exploration_strategies.base import (
        PolicyWrappedWithExplorationStrategy)

    from railrl.torch.td3.td3 import TD3 as TD3Trainer
    from railrl.torch.torch_rl_algorithm import TorchBatchRLAlgorithm

    from railrl.torch.networks import FlattenMlp, TanhMlpPolicy
    # preprocess_rl_variant(variant)
    env = get_envs(variant)
    expl_env = env
    eval_env = env
    es = get_exploration_strategy(variant, env)

    if variant.get("use_masks", False):
        mask_wrapper_kwargs = variant.get("mask_wrapper_kwargs", dict())

        expl_mask_distribution_kwargs = variant[
            "expl_mask_distribution_kwargs"]
        expl_mask_distribution = DiscreteDistribution(
            **expl_mask_distribution_kwargs)
        expl_env = RewardMaskWrapper(env, expl_mask_distribution,
                                     **mask_wrapper_kwargs)

        eval_mask_distribution_kwargs = variant[
            "eval_mask_distribution_kwargs"]
        eval_mask_distribution = DiscreteDistribution(
            **eval_mask_distribution_kwargs)
        eval_env = RewardMaskWrapper(env, eval_mask_distribution,
                                     **mask_wrapper_kwargs)
        env = eval_env

    max_path_length = variant['max_path_length']

    observation_key = variant.get('observation_key', 'latent_observation')
    desired_goal_key = variant.get('desired_goal_key', 'latent_desired_goal')
    achieved_goal_key = variant.get('achieved_goal_key',
                                    'latent_achieved_goal')
    # achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    obs_dim = (env.observation_space.spaces[observation_key].low.size +
               env.observation_space.spaces[desired_goal_key].low.size)

    action_dim = env.action_space.low.size
    qf1 = FlattenMlp(input_size=obs_dim + action_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    qf2 = FlattenMlp(input_size=obs_dim + action_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    policy = TanhMlpPolicy(input_size=obs_dim,
                           output_size=action_dim,
                           **variant['policy_kwargs'])
    target_qf1 = FlattenMlp(input_size=obs_dim + action_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    target_qf2 = FlattenMlp(input_size=obs_dim + action_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    target_policy = TanhMlpPolicy(input_size=obs_dim,
                                  output_size=action_dim,
                                  **variant['policy_kwargs'])

    if variant.get("use_subgoal_policy", False):
        from railrl.policies.timed_policy import SubgoalPolicyWrapper

        subgoal_policy_kwargs = variant.get('subgoal_policy_kwargs', {})

        policy = SubgoalPolicyWrapper(wrapped_policy=policy,
                                      env=env,
                                      episode_length=max_path_length,
                                      **subgoal_policy_kwargs)
        target_policy = SubgoalPolicyWrapper(wrapped_policy=target_policy,
                                             env=env,
                                             episode_length=max_path_length,
                                             **subgoal_policy_kwargs)

    expl_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )

    replay_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        # use_masks=variant.get("use_masks", False),
        **variant['replay_buffer_kwargs'])

    trainer = TD3Trainer(policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         target_policy=target_policy,
                         **variant['td3_trainer_kwargs'])
    # if variant.get("use_masks", False):
    #     from railrl.torch.her.her import MaskedHERTrainer
    #     trainer = MaskedHERTrainer(trainer)
    # else:
    trainer = HERTrainer(trainer)
    if variant.get("do_state_exp", False):
        eval_path_collector = GoalConditionedPathCollector(
            eval_env,
            policy,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
            # use_masks=variant.get("use_masks", False),
            # full_mask=True,
        )
        expl_path_collector = GoalConditionedPathCollector(
            expl_env,
            expl_policy,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
            # use_masks=variant.get("use_masks", False),
        )
    else:
        eval_path_collector = VAEWrappedEnvPathCollector(
            env,
            policy,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
            goal_sampling_mode=['evaluation_goal_sampling_mode'],
        )
        expl_path_collector = VAEWrappedEnvPathCollector(
            env,
            expl_policy,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
            goal_sampling_mode=['exploration_goal_sampling_mode'],
        )

    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=env,
        evaluation_env=env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        max_path_length=max_path_length,
        **variant['algo_kwargs'])

    vis_variant = variant.get('vis_kwargs', {})
    vis_list = vis_variant.get('vis_list', [])
    if variant.get("save_video", True):
        if variant.get("do_state_exp", False):
            rollout_function = rf.create_rollout_function(
                rf.multitask_rollout,
                max_path_length=max_path_length,
                observation_key=observation_key,
                desired_goal_key=desired_goal_key,
                # use_masks=variant.get("use_masks", False),
                # full_mask=True,
                # vis_list=vis_list,
            )
            video_func = get_video_save_func(
                rollout_function,
                env,
                policy,
                variant,
            )
        else:
            video_func = VideoSaveFunction(
                env,
                variant,
            )
        algorithm.post_train_funcs.append(video_func)

    algorithm.to(ptu.device)
    if not variant.get("do_state_exp", False):
        env.vae.to(ptu.device)
    algorithm.train()
Пример #8
0
def experiment(variant):
    expl_env = variant['env_class'](**variant['env_kwargs'])
    eval_env = variant['env_class'](**variant['env_kwargs'])

    observation_key = 'state_observation'
    desired_goal_key = 'state_desired_goal'
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    es = GaussianAndEpislonStrategy(
        action_space=expl_env.action_space,
        max_sigma=.2,
        min_sigma=.2,  # constant sigma
        epsilon=.3,
    )
    obs_dim = expl_env.observation_space.spaces['observation'].low.size
    goal_dim = expl_env.observation_space.spaces['desired_goal'].low.size
    action_dim = expl_env.action_space.low.size
    qf1 = FlattenMlp(
        input_size=obs_dim + goal_dim + action_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + goal_dim + action_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    target_qf1 = FlattenMlp(
        input_size=obs_dim + goal_dim + action_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    target_qf2 = FlattenMlp(
        input_size=obs_dim + goal_dim + action_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    policy = TanhMlpPolicy(
        input_size=obs_dim + goal_dim,
        output_size=action_dim,
        **variant['policy_kwargs']
    )
    target_policy = TanhMlpPolicy(
        input_size=obs_dim + goal_dim,
        output_size=action_dim,
        **variant['policy_kwargs']
    )
    expl_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    replay_buffer = ObsDictRelabelingBuffer(
        env=eval_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs']
    )
    trainer = TD3(
        policy=policy,
        qf1=qf1,
        qf2=qf2,
        target_qf1=target_qf1,
        target_qf2=target_qf2,
        target_policy=target_policy,
        **variant['trainer_kwargs']
    )
    trainer = HERTrainer(trainer)
    eval_path_collector = GoalConditionedPathCollector(
        eval_env,
        policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    expl_path_collector = GoalConditionedPathCollector(
        expl_env,
        expl_policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        **variant['algo_kwargs']
    )
    algorithm.to(ptu.device)
    algorithm.train()
def her_td3_experiment(variant):
    env = variant['env_class'](**variant['env_kwargs'])
    her_kwargs = variant['algo_kwargs']['her_kwargs']
    observation_key = her_kwargs['observation_key']
    desired_goal_key = her_kwargs['desired_goal_key']
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    replay_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs']
    )
    obs_dim = env.observation_space.spaces['observation'].low.size
    action_dim = env.action_space.low.size
    goal_dim = env.observation_space.spaces['desired_goal'].low.size
    exploration_type = variant['exploration_type']
    if exploration_type == 'ou':
        es = OUStrategy(
            action_space=env.action_space,
            **variant['es_kwargs']
        )
    elif exploration_type == 'gaussian':
        es = GaussianStrategy(
            action_space=env.action_space,
            **variant['es_kwargs'],
        )
    elif exploration_type == 'epsilon':
        es = EpsilonGreedy(
            action_space=env.action_space,
            **variant['es_kwargs'],
        )
    else:
        raise Exception("Invalid type: " + exploration_type)
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim + goal_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim + goal_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    num_ensemble_qs = variant.get("num_ensemble_qs", 0)
    ensemble_qs = [FlattenMlp(
        input_size=obs_dim + action_dim + goal_dim,
        output_size=1,
        **variant['qf_kwargs']
    ) for _ in range(num_ensemble_qs)]
    policy = TanhMlpPolicy(
        input_size=obs_dim + goal_dim,
        output_size=action_dim,
        **variant['policy_kwargs']
    )
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    render = variant.get("render", False)
    algorithm = HerExplorationTd3(
        env,
        qf1=qf1,
        qf2=qf2,
        policy=policy,
        exploration_policy=exploration_policy,
        replay_buffer=replay_buffer,
        render=render,
        render_during_eval=render,
        ensemble_qs=ensemble_qs,
        **variant['algo_kwargs']
    )
    algorithm.to(ptu.device)
    algorithm.train()
Пример #10
0
def experiment(variant):
    import railrl.samplers.rollout_functions as rf
    import railrl.torch.pytorch_util as ptu
    from railrl.data_management.obs_dict_replay_buffer import \
        ObsDictRelabelingBuffer
    from railrl.exploration_strategies.base import (
        PolicyWrappedWithExplorationStrategy)
    from railrl.torch.her.her import HERTrainer
    from railrl.torch.td3.td3 import TD3 as TD3Trainer
    from railrl.torch.networks import FlattenMlp, TanhMlpPolicy
    from railrl.torch.torch_rl_algorithm import TorchBatchRLAlgorithm
    from railrl.samplers.data_collector import GoalConditionedPathCollector
    from railrl.torch.grill.launcher import (
        grill_preprocess_variant,
        get_envs,
        get_exploration_strategy,
        full_experiment_variant_preprocess,
        train_vae_and_update_variant,
        get_video_save_func,
    )

    full_experiment_variant_preprocess(variant)
    if not variant['grill_variant'].get('do_state_exp', False):
        train_vae_and_update_variant(variant)
    variant = variant['grill_variant']

    grill_preprocess_variant(variant)
    eval_env = get_envs(variant)
    expl_env = get_envs(variant)
    es = get_exploration_strategy(variant, expl_env)

    observation_key = variant.get('observation_key', 'latent_observation')
    desired_goal_key = variant.get('desired_goal_key', 'latent_desired_goal')
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    obs_dim = (expl_env.observation_space.spaces[observation_key].low.size +
               expl_env.observation_space.spaces[desired_goal_key].low.size)
    action_dim = expl_env.action_space.low.size
    qf1 = FlattenMlp(input_size=obs_dim + action_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    qf2 = FlattenMlp(input_size=obs_dim + action_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    policy = TanhMlpPolicy(input_size=obs_dim,
                           output_size=action_dim,
                           **variant['policy_kwargs'])
    target_qf1 = FlattenMlp(input_size=obs_dim + action_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    target_qf2 = FlattenMlp(input_size=obs_dim + action_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    target_policy = TanhMlpPolicy(input_size=obs_dim,
                                  output_size=action_dim,
                                  **variant['policy_kwargs'])
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )

    replay_buffer = ObsDictRelabelingBuffer(
        env=eval_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    trainer = TD3Trainer(policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         target_policy=target_policy,
                         **variant['td3_kwargs'])
    trainer = HERTrainer(trainer)
    eval_path_collector = GoalConditionedPathCollector(
        eval_env,
        policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    expl_path_collector = GoalConditionedPathCollector(
        expl_env,
        exploration_policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        **variant['algo_kwargs'])

    if variant.get("save_video", True):  # Does not work
        rollout_function = rf.create_rollout_function(
            rf.multitask_rollout,
            max_path_length=algorithm.max_path_length,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
        )
        video_func = get_video_save_func(
            rollout_function,
            eval_env,
            policy,
            variant,
        )
        algorithm.post_epoch_funcs.append(video_func)

    algorithm.to(ptu.device)
    if not variant.get("do_state_exp", False):
        eval_env.vae.to(ptu.device)
        expl_env.vae.to(ptu.device)

    algorithm.train()
Пример #11
0
def encoder_wrapped_td3bc_experiment(variant):
    representation_size = 128
    output_classes = 20

    model_class = variant.get('model_class', TimestepPredictionModel)
    model = model_class(
        representation_size,
        # decoder_output_activation=decoder_activation,
        output_classes=output_classes,
        **variant['model_kwargs'],
    )
    # model = torch.nn.DataParallel(model)

    model_path = variant.get("model_path")
    # model = load_local_or_remote_file(model_path)
    state_dict = torch.load(model_path)
    model.load_state_dict(state_dict)
    model.to(ptu.device)
    model.eval()

    traj = np.load(variant.get("desired_trajectory"), allow_pickle=True)[0]

    goal_image = traj["observations"][-1]["image_observation"]
    goal_image = goal_image.reshape(1, 3, 500, 300).transpose([0, 1, 3, 2
                                                               ]) / 255.0
    # goal_image = goal_image.reshape(1, 300, 500, 3).transpose([0, 3, 1, 2]) / 255.0 # BECAUSE RLBENCH DEMOS ARENT IMAGE_ENV WRAPPED
    # goal_image = goal_image[:, :, :240, 60:500]
    goal_image = goal_image[:, :, 60:, 60:500]
    goal_image_pt = ptu.from_numpy(goal_image)
    save_image(goal_image_pt.data.cpu(), 'demos/goal.png', nrow=1)
    goal_latent = model.encode(goal_image_pt).detach().cpu().numpy().flatten()

    initial_image = traj["observations"][0]["image_observation"]
    initial_image = initial_image.reshape(1, 3, 500, 300).transpose(
        [0, 1, 3, 2]) / 255.0
    # initial_image = initial_image.reshape(1, 300, 500, 3).transpose([0, 3, 1, 2]) / 255.0
    # initial_image = initial_image[:, :, :240, 60:500]
    initial_image = initial_image[:, :, 60:, 60:500]
    initial_image_pt = ptu.from_numpy(initial_image)
    save_image(initial_image_pt.data.cpu(), 'demos/initial.png', nrow=1)
    initial_latent = model.encode(
        initial_image_pt).detach().cpu().numpy().flatten()

    # Move these to td3_bc and bc_v3 (or at least type for reward_params)
    reward_params = dict(
        goal_latent=goal_latent,
        initial_latent=initial_latent,
        type=variant["reward_params_type"],
    )

    config_params = variant.get("config_params")

    env = variant['env_class'](**variant['env_kwargs'])
    env = ImageEnv(
        env,
        recompute_reward=False,
        transpose=True,
        image_length=450000,
        reward_type="image_distance",
        # init_camera=sawyer_pusher_camera_upright_v2,
    )
    env = EncoderWrappedEnv(
        env, model, reward_params, config_params,
        **variant.get("encoder_wrapped_env_kwargs", dict()))

    expl_env = env  # variant['env_class'](**variant['env_kwargs'])
    eval_env = env  # variant['env_class'](**variant['env_kwargs'])

    observation_key = variant.get("observation_key", 'state_observation')
    # one of 'state_observation', 'latent_observation', 'concat_observation'
    desired_goal_key = 'latent_desired_goal'

    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    es = GaussianAndEpislonStrategy(
        action_space=expl_env.action_space,
        **variant["exploration_kwargs"],
    )
    obs_dim = expl_env.observation_space.spaces[observation_key].low.size
    goal_dim = expl_env.observation_space.spaces[desired_goal_key].low.size
    action_dim = expl_env.action_space.low.size
    qf1 = FlattenMlp(
        input_size=obs_dim + goal_dim + action_dim,
        output_size=1,
        # output_activation=TorchMaxClamp(0.0),
        **variant['qf_kwargs'])
    qf2 = FlattenMlp(
        input_size=obs_dim + goal_dim + action_dim,
        output_size=1,
        # output_activation=TorchMaxClamp(0.0),
        **variant['qf_kwargs'])
    target_qf1 = FlattenMlp(
        input_size=obs_dim + goal_dim + action_dim,
        output_size=1,
        # output_activation=TorchMaxClamp(0.0),
        **variant['qf_kwargs'])
    target_qf2 = FlattenMlp(
        input_size=obs_dim + goal_dim + action_dim,
        output_size=1,
        # output_activation=TorchMaxClamp(0.0),
        **variant['qf_kwargs'])

    # Support for CNNPolicy based policy/target policy
    # Defaults to TanhMlpPolicy unless cnn_params is supplied in variant
    if 'cnn_params' in variant.keys():
        imsize = 48
        policy = CNNPolicy(
            input_width=imsize,
            input_height=imsize,
            output_size=action_dim,
            input_channels=3,
            **variant['cnn_params'],
            output_activation=torch.tanh,
        )
        target_policy = CNNPolicy(
            input_width=imsize,
            input_height=imsize,
            output_size=action_dim,
            input_channels=3,
            **variant['cnn_params'],
            output_activation=torch.tanh,
        )
    else:
        policy = TanhMlpPolicy(input_size=obs_dim + goal_dim,
                               output_size=action_dim,
                               **variant['policy_kwargs'])
        target_policy = TanhMlpPolicy(input_size=obs_dim + goal_dim,
                                      output_size=action_dim,
                                      **variant['policy_kwargs'])
    expl_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    replay_buffer = ObsDictRelabelingBuffer(
        env=eval_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    demo_train_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    demo_test_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    td3bc_trainer = TD3BCTrainer(env=env,
                                 policy=policy,
                                 qf1=qf1,
                                 qf2=qf2,
                                 replay_buffer=replay_buffer,
                                 demo_train_buffer=demo_train_buffer,
                                 demo_test_buffer=demo_test_buffer,
                                 target_qf1=target_qf1,
                                 target_qf2=target_qf2,
                                 target_policy=target_policy,
                                 **variant['trainer_kwargs'])
    trainer = HERTrainer(td3bc_trainer)
    eval_path_collector = GoalConditionedPathCollector(
        eval_env,
        policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    expl_path_collector = GoalConditionedPathCollector(
        expl_env,
        expl_policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        **variant['algo_kwargs'])

    if variant.get("save_video", True):
        video_func = VideoSaveFunction(
            env,
            variant,
        )
        algorithm.post_train_funcs.append(video_func)

    algorithm.to(ptu.device)

    td3bc_trainer.load_demos()

    td3bc_trainer.pretrain_policy_with_bc()
    td3bc_trainer.pretrain_q_with_bc_data()

    algorithm.train()
Пример #12
0
def HER_baseline_td3_experiment(variant):
    import railrl.torch.pytorch_util as ptu
    from railrl.data_management.obs_dict_replay_buffer import \
        ObsDictRelabelingBuffer
    from railrl.exploration_strategies.base import (
        PolicyWrappedWithExplorationStrategy)
    from railrl.torch.her.her_td3 import HerTd3
    from railrl.torch.networks import MergedCNN, CNNPolicy
    import torch
    from multiworld.core.image_env import ImageEnv
    from railrl.misc.asset_loader import load_local_or_remote_file

    init_camera = variant.get("init_camera", None)
    presample_goals = variant.get('presample_goals', False)
    presampled_goals_path = get_presampled_goals_path(
        variant.get('presampled_goals_path', None))

    if 'env_id' in variant:
        import gym
        import multiworld
        multiworld.register_all_envs()
        env = gym.make(variant['env_id'])
    else:
        env = variant["env_class"](**variant['env_kwargs'])
    image_env = ImageEnv(
        env,
        variant.get('imsize'),
        reward_type='image_sparse',
        init_camera=init_camera,
        transpose=True,
        normalize=True,
    )
    if presample_goals:
        if presampled_goals_path is None:
            image_env.non_presampled_goal_img_is_garbage = True
            presampled_goals = variant['generate_goal_dataset_fctn'](
                env=image_env, **variant['goal_generation_kwargs'])
        else:
            presampled_goals = load_local_or_remote_file(
                presampled_goals_path).item()
        del image_env
        env = ImageEnv(
            env,
            variant.get('imsize'),
            reward_type='image_distance',
            init_camera=init_camera,
            transpose=True,
            normalize=True,
            presampled_goals=presampled_goals,
        )
    else:
        env = image_env

    es = get_exploration_strategy(variant, env)

    observation_key = variant.get('observation_key', 'image_observation')
    desired_goal_key = variant.get('desired_goal_key', 'image_desired_goal')
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    imsize = variant['imsize']
    action_dim = env.action_space.low.size
    qf1 = MergedCNN(input_width=imsize,
                    input_height=imsize,
                    output_size=1,
                    input_channels=3 * 2,
                    added_fc_input_size=action_dim,
                    **variant['cnn_params'])
    qf2 = MergedCNN(input_width=imsize,
                    input_height=imsize,
                    output_size=1,
                    input_channels=3 * 2,
                    added_fc_input_size=action_dim,
                    **variant['cnn_params'])

    policy = CNNPolicy(
        input_width=imsize,
        input_height=imsize,
        added_fc_input_size=0,
        output_size=action_dim,
        input_channels=3 * 2,
        output_activation=torch.tanh,
        **variant['cnn_params'],
    )
    target_qf1 = MergedCNN(input_width=imsize,
                           input_height=imsize,
                           output_size=1,
                           input_channels=3 * 2,
                           added_fc_input_size=action_dim,
                           **variant['cnn_params'])
    target_qf2 = MergedCNN(input_width=imsize,
                           input_height=imsize,
                           output_size=1,
                           input_channels=3 * 2,
                           added_fc_input_size=action_dim,
                           **variant['cnn_params'])

    target_policy = CNNPolicy(
        input_width=imsize,
        input_height=imsize,
        added_fc_input_size=0,
        output_size=action_dim,
        input_channels=3 * 2,
        output_activation=torch.tanh,
        **variant['cnn_params'],
    )
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )

    replay_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    algo_kwargs = variant['algo_kwargs']
    algo_kwargs['replay_buffer'] = replay_buffer
    base_kwargs = algo_kwargs['base_kwargs']
    base_kwargs['training_env'] = env
    base_kwargs['render'] = variant["render"]
    base_kwargs['render_during_eval'] = variant["render"]
    her_kwargs = algo_kwargs['her_kwargs']
    her_kwargs['observation_key'] = observation_key
    her_kwargs['desired_goal_key'] = desired_goal_key
    algorithm = HerTd3(env,
                       qf1=qf1,
                       qf2=qf2,
                       policy=policy,
                       target_qf1=target_qf1,
                       target_qf2=target_qf2,
                       target_policy=target_policy,
                       exploration_policy=exploration_policy,
                       **variant['algo_kwargs'])

    algorithm.to(ptu.device)
    algorithm.train()
Пример #13
0
def tdm_twin_sac_experiment(variant):
    import railrl.samplers.rollout_functions as rf
    import railrl.torch.pytorch_util as ptu
    from railrl.data_management.obs_dict_replay_buffer import \
        ObsDictRelabelingBuffer
    from railrl.state_distance.tdm_networks import (
        TdmQf,
        TdmVf,
        StochasticTdmPolicy,
    )
    from railrl.state_distance.tdm_twin_sac import TdmTwinSAC
    preprocess_rl_variant(variant)
    env = get_envs(variant)
    observation_key = variant.get('observation_key', 'latent_observation')
    desired_goal_key = variant.get('desired_goal_key', 'latent_desired_goal')
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    obs_dim = (env.observation_space.spaces[observation_key].low.size)
    goal_dim = (env.observation_space.spaces[desired_goal_key].low.size)
    action_dim = env.action_space.low.size

    vectorized = 'vectorized' in env.reward_type
    norm_order = env.norm_order
    variant['algo_kwargs']['tdm_kwargs']['vectorized'] = vectorized
    variant['qf_kwargs']['vectorized'] = vectorized
    variant['vf_kwargs']['vectorized'] = vectorized
    variant['qf_kwargs']['norm_order'] = norm_order
    variant['vf_kwargs']['norm_order'] = norm_order

    qf1 = TdmQf(env=env,
                observation_dim=obs_dim,
                goal_dim=goal_dim,
                action_dim=action_dim,
                **variant['qf_kwargs'])
    qf2 = TdmQf(env=env,
                observation_dim=obs_dim,
                goal_dim=goal_dim,
                action_dim=action_dim,
                **variant['qf_kwargs'])
    vf = TdmVf(env=env,
               observation_dim=obs_dim,
               goal_dim=goal_dim,
               **variant['vf_kwargs'])
    policy = StochasticTdmPolicy(env=env,
                                 observation_dim=obs_dim,
                                 goal_dim=goal_dim,
                                 action_dim=action_dim,
                                 **variant['policy_kwargs'])
    variant['replay_buffer_kwargs']['vectorized'] = vectorized
    replay_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    algo_kwargs = variant['algo_kwargs']
    algo_kwargs['replay_buffer'] = replay_buffer
    base_kwargs = algo_kwargs['base_kwargs']
    base_kwargs['training_env'] = env
    base_kwargs['render'] = variant["render"]
    base_kwargs['render_during_eval'] = variant["render"]
    tdm_kwargs = algo_kwargs['tdm_kwargs']
    tdm_kwargs['observation_key'] = observation_key
    tdm_kwargs['desired_goal_key'] = desired_goal_key
    algorithm = TdmTwinSAC(env,
                           qf1=qf1,
                           qf2=qf2,
                           vf=vf,
                           policy=policy,
                           **variant['algo_kwargs'])

    if variant.get("save_video", True):
        rollout_function = rf.create_rollout_function(
            rf.tdm_rollout,
            init_tau=algorithm._sample_max_tau_for_rollout(),
            decrement_tau=algorithm.cycle_taus_for_rollout,
            cycle_tau=algorithm.cycle_taus_for_rollout,
            max_path_length=algorithm.max_path_length,
            observation_key=algorithm.observation_key,
            desired_goal_key=algorithm.desired_goal_key,
        )
        video_func = get_video_save_func(
            rollout_function,
            env,
            algorithm.eval_policy,
            variant,
        )
        algorithm.post_train_funcs.append(video_func)

    algorithm.to(ptu.device)
    if not variant.get("do_state_exp", False):
        env.vae.to(ptu.device)

    algorithm.train()
Пример #14
0
def tdm_td3_experiment(variant):
    import railrl.samplers.rollout_functions as rf
    import railrl.torch.pytorch_util as ptu
    from railrl.core import logger
    from railrl.data_management.obs_dict_replay_buffer import \
        ObsDictRelabelingBuffer
    from railrl.exploration_strategies.base import (
        PolicyWrappedWithExplorationStrategy)
    from railrl.state_distance.tdm_networks import TdmQf, TdmPolicy
    from railrl.state_distance.tdm_td3 import TdmTd3
    preprocess_rl_variant(variant)
    env = get_envs(variant)
    es = get_exploration_strategy(variant, env)
    observation_key = variant.get('observation_key', 'latent_observation')
    desired_goal_key = variant.get('desired_goal_key', 'latent_desired_goal')
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    obs_dim = (env.observation_space.spaces[observation_key].low.size)
    goal_dim = (env.observation_space.spaces[desired_goal_key].low.size)
    action_dim = env.action_space.low.size

    vectorized = 'vectorized' in env.reward_type
    norm_order = env.norm_order
    variant['algo_kwargs']['tdm_kwargs']['vectorized'] = vectorized
    variant['qf_kwargs']['vectorized'] = vectorized
    variant['qf_kwargs']['norm_order'] = norm_order

    qf1 = TdmQf(env=env,
                observation_dim=obs_dim,
                goal_dim=goal_dim,
                action_dim=action_dim,
                **variant['qf_kwargs'])
    qf2 = TdmQf(env=env,
                observation_dim=obs_dim,
                goal_dim=goal_dim,
                action_dim=action_dim,
                **variant['qf_kwargs'])
    policy = TdmPolicy(env=env,
                       observation_dim=obs_dim,
                       goal_dim=goal_dim,
                       action_dim=action_dim,
                       **variant['policy_kwargs'])
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    variant['replay_buffer_kwargs']['vectorized'] = vectorized
    replay_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    algo_kwargs = variant['algo_kwargs']
    algo_kwargs['replay_buffer'] = replay_buffer
    base_kwargs = algo_kwargs['base_kwargs']
    base_kwargs['training_env'] = env
    base_kwargs['render'] = variant["render"]
    base_kwargs['render_during_eval'] = variant["render"]
    tdm_kwargs = algo_kwargs['tdm_kwargs']
    tdm_kwargs['observation_key'] = observation_key
    tdm_kwargs['desired_goal_key'] = desired_goal_key
    algorithm = TdmTd3(env,
                       qf1=qf1,
                       qf2=qf2,
                       policy=policy,
                       exploration_policy=exploration_policy,
                       **variant['algo_kwargs'])

    algorithm.to(ptu.device)
    if not variant.get("do_state_exp", False):
        env.vae.to(ptu.device)
    if variant.get("save_video", True):
        logdir = logger.get_snapshot_dir()
        policy.train(False)
        rollout_function = rf.create_rollout_function(
            rf.tdm_rollout,
            init_tau=algorithm.max_tau,
            max_path_length=algorithm.max_path_length,
            observation_key=algorithm.observation_key,
            desired_goal_key=algorithm.desired_goal_key,
        )
        video_func = get_video_save_func(
            rollout_function,
            env,
            policy,
            variant,
        )
        algorithm.post_train_funcs.append(video_func)
    algorithm.train()
Пример #15
0
def tdm_td3_experiment(variant):
    variant['env_kwargs'].update(variant['reward_params'])
    env = variant['env_class'](**variant['env_kwargs'])

    multiworld_env = variant.get('multiworld_env', True)

    if multiworld_env is not True:
        env = MultitaskEnvToSilentMultitaskEnv(env)
        if variant["render"]:
            env.pause_on_goal = True

    if variant['normalize']:
        env = NormalizedBoxEnv(env)

    exploration_type = variant['exploration_type']
    if exploration_type == 'ou':
        es = OUStrategy(action_space=env.action_space,
                        max_sigma=0.1,
                        **variant['es_kwargs'])
    elif exploration_type == 'gaussian':
        es = GaussianStrategy(
            action_space=env.action_space,
            max_sigma=0.1,
            min_sigma=0.1,  # Constant sigma
            **variant['es_kwargs'],
        )
    elif exploration_type == 'epsilon':
        es = EpsilonGreedy(
            action_space=env.action_space,
            prob_random_action=0.1,
            **variant['es_kwargs'],
        )
    else:
        raise Exception("Invalid type: " + exploration_type)
    if multiworld_env is True:
        obs_dim = env.observation_space.spaces['observation'].low.size
        action_dim = env.action_space.low.size
        goal_dim = env.observation_space.spaces['desired_goal'].low.size
    else:
        obs_dim = action_dim = goal_dim = None
    vectorized = 'vectorized' in env.reward_type
    variant['algo_kwargs']['tdm_kwargs']['vectorized'] = vectorized

    norm_order = env.norm_order
    variant['algo_kwargs']['tdm_kwargs']['norm_order'] = norm_order

    qf1 = TdmQf(env=env,
                observation_dim=obs_dim,
                action_dim=action_dim,
                goal_dim=goal_dim,
                vectorized=vectorized,
                norm_order=norm_order,
                **variant['qf_kwargs'])
    qf2 = TdmQf(env=env,
                observation_dim=obs_dim,
                action_dim=action_dim,
                goal_dim=goal_dim,
                vectorized=vectorized,
                norm_order=norm_order,
                **variant['qf_kwargs'])
    policy = TdmPolicy(env=env,
                       observation_dim=obs_dim,
                       action_dim=action_dim,
                       goal_dim=goal_dim,
                       **variant['policy_kwargs'])
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )

    relabeling_env = pickle.loads(pickle.dumps(env))

    algo_kwargs = variant['algo_kwargs']

    if multiworld_env is True:
        observation_key = variant.get('observation_key', 'state_observation')
        desired_goal_key = variant.get('desired_goal_key',
                                       'state_desired_goal')
        achieved_goal_key = variant.get('achieved_goal_key',
                                        'state_achieved_goal')
        replay_buffer = ObsDictRelabelingBuffer(
            env=relabeling_env,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
            achieved_goal_key=achieved_goal_key,
            vectorized=vectorized,
            **variant['replay_buffer_kwargs'])
        algo_kwargs['tdm_kwargs']['observation_key'] = observation_key
        algo_kwargs['tdm_kwargs']['desired_goal_key'] = desired_goal_key
    else:
        replay_buffer = RelabelingReplayBuffer(
            env=relabeling_env, **variant['replay_buffer_kwargs'])

    # qf_criterion = variant['qf_criterion_class']()
    # algo_kwargs['td3_kwargs']['qf_criterion'] = qf_criterion
    algo_kwargs['td3_kwargs']['training_env'] = env
    if 'tau_schedule_kwargs' in variant:
        tau_schedule = IntPiecewiseLinearSchedule(
            **variant['tau_schedule_kwargs'])
    else:
        tau_schedule = None
    algo_kwargs['tdm_kwargs']['epoch_max_tau_schedule'] = tau_schedule

    algorithm = TdmTd3(env,
                       qf1=qf1,
                       qf2=qf2,
                       policy=policy,
                       exploration_policy=exploration_policy,
                       replay_buffer=replay_buffer,
                       **variant['algo_kwargs'])
    if ptu.gpu_enabled():
        qf1.to(ptu.device)
        qf2.to(ptu.device)
        policy.to(ptu.device)
        algorithm.to(ptu.device)
    algorithm.train()
Пример #16
0
def tdm_td3_experiment(variant):
    import railrl.samplers.rollout_functions as rf
    import railrl.torch.pytorch_util as ptu
    from railrl.data_management.obs_dict_replay_buffer import \
        ObsDictRelabelingBuffer
    from railrl.exploration_strategies.base import (
        PolicyWrappedWithExplorationStrategy)
    from railrl.state_distance.tdm_networks import TdmQf, TdmPolicy
    from railrl.state_distance.tdm_td3 import TdmTd3
    from railrl.my_td3 import Actor, Critic, MY_TD3
    from railrl.state_distance.subgoal_planner import SubgoalPlanner
    from railrl.misc.asset_loader import local_path_from_s3_or_local_path
    from railrl.my_tdm_td3 import MyTdmTd3
    import joblib

    preprocess_rl_variant(variant)
    env = get_envs(variant)
    es = get_exploration_strategy(variant, env)

    observation_key = variant.get('observation_key', 'latent_observation')
    desired_goal_key = variant.get('desired_goal_key', 'latent_desired_goal')
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")

    vectorized = 'vectorized' in env.reward_type
    variant['algo_kwargs']['tdm_kwargs']['vectorized'] = vectorized
    variant['replay_buffer_kwargs']['vectorized'] = vectorized

    args = {'latent_dim': 16, 'device': 'cuda'}  #OWN

    if 'ckpt' in variant:
        if 'ckpt_epoch' in variant:
            epoch = variant['ckpt_epoch']
            filename = local_path_from_s3_or_local_path(
                osp.join(variant['ckpt'], 'itr_%d.pkl' % epoch))
        else:
            filename = local_path_from_s3_or_local_path(
                osp.join(variant['ckpt'], 'params.pkl'))
        print("Loading ckpt from", filename)
        data = joblib.load(filename)
        qf1 = data['qf1']
        qf2 = data['qf2']
        policy = data['policy']
        variant['algo_kwargs']['base_kwargs'][
            'reward_scale'] = policy.reward_scale
    else:
        obs_dim = (env.observation_space.spaces[observation_key].low.size)
        goal_dim = (env.observation_space.spaces[desired_goal_key].low.size)
        action_dim = env.action_space.low.size
        max_action = env.action_space.high

        variant['qf_kwargs']['vectorized'] = vectorized
        norm_order = env.norm_order
        variant['qf_kwargs']['norm_order'] = norm_order
        env.reset()
        _, rew, _, _ = env.step(env.action_space.sample())
        if hasattr(rew, "__len__"):
            variant['qf_kwargs']['output_dim'] = len(rew)
        '''qf1 = TdmQf(
            env=env,
            observation_dim=obs_dim,
            goal_dim=goal_dim,
            action_dim=action_dim,
            **variant['qf_kwargs']
        )
        qf2 = TdmQf(
            env=env,
            observation_dim=obs_dim,
            goal_dim=goal_dim,
            action_dim=action_dim,
            **variant['qf_kwargs']
        )
        policy = TdmPolicy(
            env=env,
            observation_dim=obs_dim,
            goal_dim=goal_dim,
            action_dim=action_dim,
            reward_scale=variant['algo_kwargs']['base_kwargs'].get('reward_scale', 1.0),
            **variant['policy_kwargs']
        )'''
        policy = Actor(obs_dim,
                       action_dim,
                       goal_dim,
                       1,
                       max_action=max_action,
                       device=args['device'],
                       reward_scale=10.0,
                       networks_hidden=[400, 300]).cuda()

        qf1 = Critic(obs_dim, action_dim, goal_dim, 1, 4, args['device'],
                     [400, 300]).cuda()
        qf2 = Critic(obs_dim, action_dim, goal_dim, 1, 4, args['device'],
                     [400, 300]).cuda()

    eval_policy = None
    if variant.get('eval_policy', None) == 'SubgoalPlanner':
        eval_policy = SubgoalPlanner(
            env,
            qf1,
            policy,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
            achieved_goal_key=achieved_goal_key,
            state_based=variant.get("do_state_exp", False),
            max_tau=variant['algo_kwargs']['tdm_kwargs']['max_tau'],
            reward_scale=variant['algo_kwargs']['base_kwargs'].get(
                'reward_scale', 1.0),
            **variant['SubgoalPlanner_kwargs'])

    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )

    replay_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])

    algo_kwargs = variant['algo_kwargs']
    algo_kwargs['replay_buffer'] = replay_buffer
    base_kwargs = algo_kwargs['base_kwargs']
    base_kwargs['training_env'] = env
    base_kwargs['render'] = variant.get("render", False)
    base_kwargs['render_during_eval'] = variant.get("render_during_eval",
                                                    False)
    tdm_kwargs = algo_kwargs['tdm_kwargs']
    tdm_kwargs['observation_key'] = observation_key
    tdm_kwargs['desired_goal_key'] = desired_goal_key
    '''algorithm = TdmTd3(
        env,
        qf1=qf1,
        qf2=qf2,
        policy=policy,
        exploration_policy=exploration_policy,
        eval_policy=eval_policy,
        **variant['algo_kwargs']
    )'''
    algorithm = MyTdmTd3(actor=policy,
                         critic1=qf1,
                         critic2=qf2,
                         max_action=max_action,
                         args=args,
                         env=env,
                         exploration_policy=exploration_policy,
                         eval_policy=eval_policy,
                         **variant['algo_kwargs'])

    if variant.get("test_ckpt", False):
        algorithm.post_epoch_funcs.append(get_update_networks_func(variant))

    vis_variant = variant.get('vis_kwargs', {})
    vis_list = vis_variant.get('vis_list', [])
    if vis_variant.get("save_video", True):
        rollout_function = rf.create_rollout_function(
            rf.tdm_rollout,
            init_tau=algorithm._sample_max_tau_for_rollout(),
            decrement_tau=algorithm.cycle_taus_for_rollout,
            cycle_tau=algorithm.cycle_taus_for_rollout,
            max_path_length=algorithm.max_path_length,
            observation_key=algorithm.observation_key,
            desired_goal_key=algorithm.desired_goal_key,
            vis_list=vis_list,
            dont_terminate=True,
        )
        video_func = get_video_save_func(
            rollout_function,
            env,
            variant,
        )
        algorithm.post_epoch_funcs.append(video_func)

    if ptu.gpu_enabled():
        print("using GPU")
        algorithm.cuda()
        if not variant.get("do_state_exp", False):
            env.vae.cuda()

    env.reset()
    if not variant.get("do_state_exp", False):
        env.dump_samples(epoch=None)
        env.dump_reconstructions(epoch=None)
        env.dump_latent_plots(epoch=None)

    algorithm.train()
Пример #17
0
def her_td3_experiment(variant):
    env = variant['env_class'](**variant['env_kwargs'])
    observation_key = variant.get('observation_key', 'observation')
    desired_goal_key = variant.get('desired_goal_key', 'desired_goal')
    replay_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        **variant['replay_buffer_kwargs']
    )
    obs_dim = env.observation_space.spaces['observation'].low.size
    action_dim = env.action_space.low.size
    goal_dim = env.observation_space.spaces['desired_goal'].low.size
    if variant['normalize']:
        env = NormalizedBoxEnv(env)
    exploration_type = variant['exploration_type']
    if exploration_type == 'ou':
        es = OUStrategy(
            action_space=env.action_space,
            max_sigma=0.1,
            **variant['es_kwargs']
        )
    elif exploration_type == 'gaussian':
        es = GaussianStrategy(
            action_space=env.action_space,
            max_sigma=0.1,
            min_sigma=0.1,  # Constant sigma
            **variant['es_kwargs'],
        )
    elif exploration_type == 'epsilon':
        es = EpsilonGreedy(
            action_space=env.action_space,
            prob_random_action=0.1,
            **variant['es_kwargs'],
        )
    else:
        raise Exception("Invalid type: " + exploration_type)
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim + goal_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim + goal_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    policy = TanhMlpPolicy(
        input_size=obs_dim + goal_dim,
        output_size=action_dim,
        **variant['policy_kwargs']
    )
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    algorithm = HerTd3(
        env,
        qf1=qf1,
        qf2=qf2,
        policy=policy,
        exploration_policy=exploration_policy,
        replay_buffer=replay_buffer,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        **variant['algo_kwargs']
    )
    if ptu.gpu_enabled():
        qf1.to(ptu.device)
        qf2.to(ptu.device)
        policy.to(ptu.device)
        algorithm.to(ptu.device)
    algorithm.train()
Пример #18
0
def grill_her_td3_experiment(variant):
    env = variant["env_class"](**variant['env_kwargs'])

    render = variant["render"]

    rdim = variant["rdim"]
    vae_path = variant["vae_paths"][str(rdim)]
    reward_params = variant.get("reward_params", dict())

    init_camera = variant.get("init_camera", None)
    if init_camera is None:
        camera_name = "topview"
    else:
        camera_name = None

    env = ImageEnv(
        env,
        84,
        init_camera=init_camera,
        camera_name=camera_name,
        transpose=True,
        normalize=True,
    )

    env = VAEWrappedEnv(
        env,
        vae_path,
        decode_goals=render,
        render_goals=render,
        render_rollouts=render,
        reward_params=reward_params,
        **variant.get('vae_wrapped_env_kwargs', {})
    )

    if variant['normalize']:
        env = NormalizedBoxEnv(env)
    exploration_type = variant['exploration_type']
    exploration_noise = variant.get('exploration_noise', 0.1)
    if exploration_type == 'ou':
        es = OUStrategy(action_space=env.action_space)
    elif exploration_type == 'gaussian':
        es = GaussianStrategy(
            action_space=env.action_space,
            max_sigma=exploration_noise,
            min_sigma=exploration_noise,  # Constant sigma
        )
    elif exploration_type == 'epsilon':
        es = EpsilonGreedy(
            action_space=env.action_space,
            prob_random_action=exploration_noise,
        )
    else:
        raise Exception("Invalid type: " + exploration_type)
    observation_key = variant.get('observation_key', 'latent_observation')
    desired_goal_key = variant.get('desired_goal_key', 'latent_desired_goal')
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    obs_dim = (
        env.observation_space.spaces[observation_key].low.size
        + env.observation_space.spaces[desired_goal_key].low.size
    )
    action_dim = env.action_space.low.size
    hidden_sizes = variant.get('hidden_sizes', [400, 300])
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=hidden_sizes,
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=hidden_sizes,
    )
    policy = TanhMlpPolicy(
        input_size=obs_dim,
        output_size=action_dim,
        hidden_sizes=hidden_sizes,
    )
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )

    training_mode = variant.get("training_mode", "train")
    testing_mode = variant.get("testing_mode", "test")

    testing_env = pickle.loads(pickle.dumps(env))
    testing_env.mode(testing_mode)

    training_env = pickle.loads(pickle.dumps(env))
    training_env.mode(training_mode)

    relabeling_env = pickle.loads(pickle.dumps(env))
    relabeling_env.mode(training_mode)
    relabeling_env.disable_render()

    video_vae_env = pickle.loads(pickle.dumps(env))
    video_vae_env.mode("video_vae")
    video_goal_env = pickle.loads(pickle.dumps(env))
    video_goal_env.mode("video_env")


    replay_buffer = ObsDictRelabelingBuffer(
        env=relabeling_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_kwargs']
    )
    variant["algo_kwargs"]["replay_buffer"] = replay_buffer
    algorithm = HerTd3(
        testing_env,
        training_env=training_env,
        qf1=qf1,
        qf2=qf2,
        policy=policy,
        exploration_policy=exploration_policy,
        render=render,
        render_during_eval=render,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        **variant['algo_kwargs']
    )

    if ptu.gpu_enabled():
        print("using GPU")
        algorithm.to(ptu.device)
        for e in [testing_env, training_env, video_vae_env, video_goal_env]:
            e.vae.to(ptu.device)

    algorithm.train()

    if variant.get("save_video", True):
        logdir = logger.get_snapshot_dir()
        policy.train(False)
        filename = osp.join(logdir, 'video_final_env.mp4')
        rollout_function = rf.create_rollout_function(
            rf.multitask_rollout,
            max_path_length=algorithm.max_path_length,
            observation_key=algorithm.observation_key,
            desired_goal_key=algorithm.desired_goal_key,
        )
        dump_video(video_goal_env, policy, filename, rollout_function)
        filename = osp.join(logdir, 'video_final_vae.mp4')
        dump_video(video_vae_env, policy, filename, rollout_function)
Пример #19
0
def her_td3_experiment(variant):
    import gym

    import railrl.torch.pytorch_util as ptu
    from railrl.data_management.obs_dict_replay_buffer import ObsDictRelabelingBuffer
    from railrl.exploration_strategies.base import \
        PolicyWrappedWithExplorationStrategy
    from railrl.exploration_strategies.gaussian_and_epislon import \
        GaussianAndEpislonStrategy
    from railrl.launchers.launcher_util import setup_logger
    from railrl.samplers.data_collector import GoalConditionedPathCollector
    from railrl.torch.her.her import HERTrainer
    from railrl.torch.networks import FlattenMlp, TanhMlpPolicy
    from railrl.torch.td3.td3 import TD3
    from railrl.torch.torch_rl_algorithm import TorchBatchRLAlgorithm
    import railrl.samplers.rollout_functions as rf
    from railrl.torch.grill.launcher import get_state_experiment_video_save_function

    if 'env_id' in variant:
        eval_env = gym.make(variant['env_id'])
        expl_env = gym.make(variant['env_id'])
    else:
        eval_env_kwargs = variant.get('eval_env_kwargs', variant['env_kwargs'])
        eval_env = variant['env_class'](**eval_env_kwargs)
        expl_env = variant['env_class'](**variant['env_kwargs'])

    observation_key = 'state_observation'
    desired_goal_key = 'state_desired_goal'
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    es = GaussianAndEpislonStrategy(
        action_space=expl_env.action_space,
        max_sigma=.2,
        min_sigma=.2,  # constant sigma
        epsilon=.3,
    )
    obs_dim = expl_env.observation_space.spaces['observation'].low.size
    goal_dim = expl_env.observation_space.spaces['desired_goal'].low.size
    action_dim = expl_env.action_space.low.size
    qf1 = FlattenMlp(input_size=obs_dim + goal_dim + action_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    qf2 = FlattenMlp(input_size=obs_dim + goal_dim + action_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    target_qf1 = FlattenMlp(input_size=obs_dim + goal_dim + action_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    target_qf2 = FlattenMlp(input_size=obs_dim + goal_dim + action_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    policy = TanhMlpPolicy(input_size=obs_dim + goal_dim,
                           output_size=action_dim,
                           **variant['policy_kwargs'])
    target_policy = TanhMlpPolicy(input_size=obs_dim + goal_dim,
                                  output_size=action_dim,
                                  **variant['policy_kwargs'])
    expl_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    replay_buffer = ObsDictRelabelingBuffer(
        env=eval_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    trainer = TD3(policy=policy,
                  qf1=qf1,
                  qf2=qf2,
                  target_qf1=target_qf1,
                  target_qf2=target_qf2,
                  target_policy=target_policy,
                  **variant['trainer_kwargs'])
    trainer = HERTrainer(trainer)
    eval_path_collector = GoalConditionedPathCollector(
        eval_env,
        policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    expl_path_collector = GoalConditionedPathCollector(
        expl_env,
        expl_policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        **variant['algo_kwargs'])

    if variant.get("save_video", False):
        rollout_function = rf.create_rollout_function(
            rf.multitask_rollout,
            max_path_length=algorithm.max_path_length,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
        )
        video_func = get_state_experiment_video_save_function(
            rollout_function,
            eval_env,
            policy,
            variant,
        )
        algorithm.post_epoch_funcs.append(video_func)

    algorithm.to(ptu.device)
    algorithm.train()
Пример #20
0
def grill_her_sac_experiment(variant):
    env = variant["env_class"](**variant['env_kwargs'])

    render = variant["render"]

    rdim = variant["rdim"]
    vae_path = variant["vae_paths"][str(rdim)]
    reward_params = variant.get("reward_params", dict())

    init_camera = variant.get("init_camera", None)
    if init_camera is None:
        camera_name = "topview"
    else:
        camera_name = None

    env = ImageEnv(
        env,
        84,
        init_camera=init_camera,
        camera_name=camera_name,
        transpose=True,
        normalize=True,
    )

    env = VAEWrappedEnv(
        env,
        vae_path,
        decode_goals=render,
        render_goals=render,
        render_rollouts=render,
        reward_params=reward_params,
        **variant.get('vae_wrapped_env_kwargs', {})
    )

    if variant['normalize']:
        env = NormalizedBoxEnv(env)
    observation_key = variant.get('observation_key', 'latent_observation')
    desired_goal_key = variant.get('desired_goal_key', 'latent_desired_goal')
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    obs_dim = (
        env.observation_space.spaces[observation_key].low.size
        + env.observation_space.spaces[desired_goal_key].low.size
    )
    action_dim = env.action_space.low.size
    hidden_sizes = variant.get('hidden_sizes', [400, 300])
    qf = FlattenMlp(
        input_size=obs_dim + action_dim,
        output_size=1,
        hidden_sizes=hidden_sizes,
    )
    vf = FlattenMlp(
        input_size=obs_dim,
        output_size=1,
        hidden_sizes=hidden_sizes,
    )
    policy = TanhGaussianPolicy(
        obs_dim=obs_dim,
        action_dim=action_dim,
        hidden_sizes=hidden_sizes,
    )

    training_mode = variant.get("training_mode", "train")
    testing_mode = variant.get("testing_mode", "test")

    testing_env = pickle.loads(pickle.dumps(env))
    testing_env.mode(testing_mode)

    training_env = pickle.loads(pickle.dumps(env))
    training_env.mode(training_mode)

    relabeling_env = pickle.loads(pickle.dumps(env))
    relabeling_env.mode(training_mode)
    relabeling_env.disable_render()

    video_vae_env = pickle.loads(pickle.dumps(env))
    video_vae_env.mode("video_vae")
    video_goal_env = pickle.loads(pickle.dumps(env))
    video_goal_env.mode("video_env")


    replay_buffer = ObsDictRelabelingBuffer(
        env=relabeling_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_kwargs']
    )
    variant["algo_kwargs"]["replay_buffer"] = replay_buffer
    algorithm = HerSac(
        testing_env,
        training_env=training_env,
        qf=qf,
        vf=vf,
        policy=policy,
        render=render,
        render_during_eval=render,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        **variant['algo_kwargs']
    )

    if ptu.gpu_enabled():
        print("using GPU")
        qf.to(ptu.device)
        vf.to(ptu.device)
        policy.to(ptu.device)
        algorithm.to(ptu.device)
        for e in [testing_env, training_env, video_vae_env, video_goal_env]:
            e.vae.to(ptu.device)

    algorithm.train()

    if variant.get("save_video", True):
        logdir = logger.get_snapshot_dir()
        policy.train(False)
        filename = osp.join(logdir, 'video_final_env.mp4')
        rollout_function = rf.create_rollout_function(
            rf.multitask_rollout,
            max_path_length=algorithm.max_path_length,
            observation_key=algorithm.observation_key,
            desired_goal_key=algorithm.desired_goal_key,
        )
        dump_video(video_goal_env, policy, filename, rollout_function)
        filename = osp.join(logdir, 'video_final_vae.mp4')
        dump_video(video_vae_env, policy, filename, rollout_function)
def twin_sac_experiment(variant):
    import railrl.torch.pytorch_util as ptu
    from railrl.data_management.obs_dict_replay_buffer import \
        ObsDictRelabelingBuffer
    from railrl.torch.networks import FlattenMlp
    from railrl.torch.sac.policies import TanhGaussianPolicy
    from railrl.torch.torch_rl_algorithm import TorchBatchRLAlgorithm
    from railrl.torch.sac.policies import MakeDeterministic
    from railrl.torch.sac.sac import SACTrainer

    preprocess_rl_variant(variant)
    env = get_envs(variant)
    max_path_length = variant['max_path_length']
    observation_key = variant.get('observation_key', 'latent_observation')
    desired_goal_key = variant.get('desired_goal_key', 'latent_desired_goal')
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    obs_dim = (env.observation_space.spaces[observation_key].low.size +
               env.observation_space.spaces[desired_goal_key].low.size)
    action_dim = env.action_space.low.size
    qf1 = FlattenMlp(input_size=obs_dim + action_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    qf2 = FlattenMlp(input_size=obs_dim + action_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    target_qf1 = FlattenMlp(input_size=obs_dim + action_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    target_qf2 = FlattenMlp(input_size=obs_dim + action_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    policy = TanhGaussianPolicy(obs_dim=obs_dim,
                                action_dim=action_dim,
                                **variant['policy_kwargs'])

    replay_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])

    trainer = SACTrainer(env=env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['twin_sac_trainer_kwargs'])
    trainer = HERTrainer(trainer)
    if variant.get("do_state_exp", False):
        eval_path_collector = GoalConditionedPathCollector(
            env,
            MakeDeterministic(policy),
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
        )
        expl_path_collector = GoalConditionedPathCollector(
            env,
            policy,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
        )
    else:
        eval_path_collector = VAEWrappedEnvPathCollector(
            variant['evaluation_goal_sampling_mode'],
            env,
            MakeDeterministic(policy),
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
        )
        expl_path_collector = VAEWrappedEnvPathCollector(
            variant['exploration_goal_sampling_mode'],
            env,
            policy,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
        )

    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=env,
        evaluation_env=env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        max_path_length=max_path_length,
        **variant['algo_kwargs'])

    if variant.get("save_video", True):
        video_func = VideoSaveFunction(
            env,
            variant,
        )
        algorithm.post_train_funcs.append(video_func)

    algorithm.to(ptu.device)
    if not variant.get("do_state_exp", False):
        env.vae.to(ptu.device)
    algorithm.train()
Пример #22
0
def state_td3bc_experiment(variant):
    if variant.get('env_id', None):
        import gym
        import multiworld
        multiworld.register_all_envs()
        eval_env = gym.make(variant['env_id'])
        expl_env = gym.make(variant['env_id'])
    else:
        eval_env_kwargs = variant.get('eval_env_kwargs', variant['env_kwargs'])
        eval_env = variant['env_class'](**eval_env_kwargs)
        expl_env = variant['env_class'](**variant['env_kwargs'])

    observation_key = 'state_observation'
    desired_goal_key = 'state_desired_goal'
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    es_strat =  variant.get('es', 'ou')
    if es_strat == 'ou':
        es = OUStrategy(
            action_space=expl_env.action_space,
            max_sigma=variant['exploration_noise'],
            min_sigma=variant['exploration_noise'],
        )
    elif es_strat == 'gauss_eps':
        es = GaussianAndEpislonStrategy(
            action_space=expl_env.action_space,
            max_sigma=.2,
            min_sigma=.2,  # constant sigma
            epsilon=.3,
        )
    else:
        raise ValueError("invalid exploration strategy provided")
    obs_dim = expl_env.observation_space.spaces['observation'].low.size
    goal_dim = expl_env.observation_space.spaces['desired_goal'].low.size
    action_dim = expl_env.action_space.low.size
    qf1 = FlattenMlp(
        input_size=obs_dim + goal_dim + action_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + goal_dim + action_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    target_qf1 = FlattenMlp(
        input_size=obs_dim + goal_dim + action_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    target_qf2 = FlattenMlp(
        input_size=obs_dim + goal_dim + action_dim,
        output_size=1,
        **variant['qf_kwargs']
    )
    policy = TanhMlpPolicy(
        input_size=obs_dim + goal_dim,
        output_size=action_dim,
        **variant['policy_kwargs']
    )
    target_policy = TanhMlpPolicy(
        input_size=obs_dim + goal_dim,
        output_size=action_dim,
        **variant['policy_kwargs']
    )
    expl_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    replay_buffer = ObsDictRelabelingBuffer(
        env=eval_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs']
    )
    demo_train_buffer = ObsDictRelabelingBuffer(
        env=eval_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        max_size=variant['replay_buffer_kwargs']['max_size']
    )
    demo_test_buffer = ObsDictRelabelingBuffer(
        env=eval_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        max_size=variant['replay_buffer_kwargs']['max_size'],
    )
    if variant.get('td3_bc', True):
        td3_trainer = TD3BCTrainer(
            env=expl_env,
            policy=policy,
            qf1=qf1,
            qf2=qf2,
            replay_buffer=replay_buffer,
            demo_train_buffer=demo_train_buffer,
            demo_test_buffer=demo_test_buffer,
            target_qf1=target_qf1,
            target_qf2=target_qf2,
            target_policy=target_policy,
            **variant['td3_bc_trainer_kwargs']
        )
    else:
        td3_trainer = TD3(
            policy=policy,
            qf1=qf1,
            qf2=qf2,
            target_qf1=target_qf1,
            target_qf2=target_qf2,
            target_policy=target_policy,
            **variant['td3_trainer_kwargs']
        )
    trainer = HERTrainer(td3_trainer)
    eval_path_collector = GoalConditionedPathCollector(
        eval_env,
        policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    expl_path_collector = GoalConditionedPathCollector(
        expl_env,
        expl_policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        **variant['algo_kwargs']
    )

    if variant.get("save_video", True):
        if variant.get("presampled_goals", None):
            variant['image_env_kwargs']['presampled_goals'] = load_local_or_remote_file(variant['presampled_goals']).item()
        image_eval_env = ImageEnv(eval_env, **variant["image_env_kwargs"])
        image_eval_path_collector = GoalConditionedPathCollector(
            image_eval_env,
            policy,
            observation_key='state_observation',
            desired_goal_key='state_desired_goal',
        )
        image_expl_env = ImageEnv(expl_env, **variant["image_env_kwargs"])
        image_expl_path_collector = GoalConditionedPathCollector(
            image_expl_env,
            expl_policy,
            observation_key='state_observation',
            desired_goal_key='state_desired_goal',
        )
        video_func = VideoSaveFunction(
            image_eval_env,
            variant,
            image_expl_path_collector,
            image_eval_path_collector,
        )
        algorithm.post_train_funcs.append(video_func)

    algorithm.to(ptu.device)
    if variant.get('load_demos', False):
        td3_trainer.load_demos()
    if variant.get('pretrain_policy', False):
        td3_trainer.pretrain_policy_with_bc()
    if variant.get('pretrain_rl', False):
        td3_trainer.pretrain_q_with_bc_data()
    algorithm.train()
Пример #23
0
def ih_td3_experiment(variant):
    import railrl.samplers.rollout_functions as rf
    import railrl.torch.pytorch_util as ptu
    from railrl.data_management.obs_dict_replay_buffer import \
        ObsDictRelabelingBuffer
    from railrl.exploration_strategies.base import (
        PolicyWrappedWithExplorationStrategy
    )
    from railrl.misc.asset_loader import local_path_from_s3_or_local_path
    import joblib
    from railrl.torch.her.her_td3 import HerTd3
    from railrl.torch.networks import FlattenMlp, TanhMlpPolicy
    from railrl.state_distance.subgoal_planner import InfiniteHorizonSubgoalPlanner

    preprocess_rl_variant(variant)
    env = get_envs(variant)
    es = get_exploration_strategy(variant, env)

    observation_key = variant.get('observation_key', 'latent_observation')
    desired_goal_key = variant.get('desired_goal_key', 'latent_desired_goal')
    achieved_goal_key = desired_goal_key.replace("desired", "achieved")

    vectorized = 'vectorized' in env.reward_type
    variant['replay_buffer_kwargs']['vectorized'] = vectorized

    if 'ckpt' in variant:
        if 'ckpt_epoch' in variant:
            epoch = variant['ckpt_epoch']
            filename = local_path_from_s3_or_local_path(osp.join(variant['ckpt'], 'itr_%d.pkl' % epoch))
        else:
            filename = local_path_from_s3_or_local_path(osp.join(variant['ckpt'], 'params.pkl'))
        print("Loading ckpt from", filename)
        data = joblib.load(filename)
        qf1 = data['qf1']
        qf2 = data['qf2']
        policy = data['policy']
    else:
        obs_dim = (
                env.observation_space.spaces[observation_key].low.size
                + env.observation_space.spaces[desired_goal_key].low.size
        )
        action_dim = env.action_space.low.size

        env.reset()
        _, rew, _, _ = env.step(env.action_space.sample())
        if hasattr(rew, "__len__"):
            output_size = len(rew)
        else:
            output_size = 1

        qf1 = FlattenMlp(
            input_size=obs_dim + action_dim,
            output_size=output_size,
            **variant['qf_kwargs']
        )
        qf2 = FlattenMlp(
            input_size=obs_dim + action_dim,
            output_size=output_size,
            **variant['qf_kwargs']
        )
        policy = TanhMlpPolicy(
            input_size=obs_dim,
            output_size=action_dim,
            **variant['policy_kwargs']
        )
        policy.reward_scale = variant['algo_kwargs']['base_kwargs'].get('reward_scale', 1.0)

    eval_policy = None
    if variant.get('eval_policy', None) == 'SubgoalPlanner':
        eval_policy = InfiniteHorizonSubgoalPlanner(
            env,
            qf1,
            policy,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
            achieved_goal_key=achieved_goal_key,
            state_based=variant.get("do_state_exp", False),
            max_tau=variant['algo_kwargs']['base_kwargs']['max_path_length'] - 1,
            reward_scale=variant['algo_kwargs']['base_kwargs'].get('reward_scale', 1.0),
            **variant['SubgoalPlanner_kwargs']
        )

    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )

    replay_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs']
    )

    algo_kwargs = variant['algo_kwargs']
    algo_kwargs['replay_buffer'] = replay_buffer
    base_kwargs = algo_kwargs['base_kwargs']
    base_kwargs['training_env'] = env
    base_kwargs['render'] = variant.get("render", False)
    base_kwargs['render_during_eval'] = variant.get("render_during_eval", False)
    her_kwargs = algo_kwargs['her_kwargs']
    her_kwargs['observation_key'] = observation_key
    her_kwargs['desired_goal_key'] = desired_goal_key
    algorithm = HerTd3(
        env,
        qf1=qf1,
        qf2=qf2,
        policy=policy,
        exploration_policy=exploration_policy,
        eval_policy=eval_policy,
        **variant['algo_kwargs']
    )

    if variant.get("test_ckpt", False):
        algorithm.post_epoch_funcs.append(get_update_networks_func(variant))

    vis_variant = variant.get('vis_kwargs', {})
    vis_list = vis_variant.get('vis_list', [])
    if vis_variant.get("save_video", True):
        rollout_function = rf.create_rollout_function(
            rf.multitask_rollout,
            max_path_length=algorithm.max_path_length,
            observation_key=algorithm.observation_key,
            desired_goal_key=algorithm.desired_goal_key,
            vis_list=vis_list,
            dont_terminate=True,
        )
        video_func = get_video_save_func(
            rollout_function,
            env,
            variant,
        )
        algorithm.post_epoch_funcs.append(video_func)

    if ptu.gpu_enabled():
        print("using GPU")
        algorithm.cuda()
        if not variant.get("do_state_exp", False):
            env.vae.cuda()

    env.reset()
    if not variant.get("do_state_exp", False):
        env.dump_samples(epoch=None)
        env.dump_latent_plots(epoch=None)
        env.dump_latent_plots(epoch=None)

    algorithm.train()
Пример #24
0
def experiment(variant):
    eval_env = gym.make('FetchReach-v1')
    expl_env = gym.make('FetchReach-v1')

    observation_key = 'observation'
    desired_goal_key = 'desired_goal'

    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    replay_buffer = ObsDictRelabelingBuffer(
        env=eval_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    obs_dim = eval_env.observation_space.spaces['observation'].low.size
    action_dim = eval_env.action_space.low.size
    goal_dim = eval_env.observation_space.spaces['desired_goal'].low.size
    qf1 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    qf2 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    target_qf1 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    target_qf2 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    policy = TanhGaussianPolicy(obs_dim=obs_dim + goal_dim,
                                action_dim=action_dim,
                                **variant['policy_kwargs'])
    eval_policy = MakeDeterministic(policy)
    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['sac_trainer_kwargs'])
    trainer = HERTrainer(trainer)
    eval_path_collector = GoalConditionedPathCollector(
        eval_env,
        eval_policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    expl_path_collector = GoalConditionedPathCollector(
        expl_env,
        policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        **variant['algo_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()
Пример #25
0
def _disentangled_grill_her_twin_sac_experiment(
        max_path_length,
        encoder_kwargs,
        disentangled_qf_kwargs,
        qf_kwargs,
        twin_sac_trainer_kwargs,
        replay_buffer_kwargs,
        policy_kwargs,
        vae_evaluation_goal_sampling_mode,
        vae_exploration_goal_sampling_mode,
        base_env_evaluation_goal_sampling_mode,
        base_env_exploration_goal_sampling_mode,
        algo_kwargs,
        env_id=None,
        env_class=None,
        env_kwargs=None,
        observation_key='state_observation',
        desired_goal_key='state_desired_goal',
        achieved_goal_key='state_achieved_goal',
        latent_dim=2,
        vae_wrapped_env_kwargs=None,
        vae_path=None,
        vae_n_vae_training_kwargs=None,
        vectorized=False,
        save_video=True,
        save_video_kwargs=None,
        have_no_disentangled_encoder=False,
        **kwargs):
    if env_kwargs is None:
        env_kwargs = {}
    assert env_id or env_class

    if env_id:
        import gym
        import multiworld
        multiworld.register_all_envs()
        train_env = gym.make(env_id)
        eval_env = gym.make(env_id)
    else:
        eval_env = env_class(**env_kwargs)
        train_env = env_class(**env_kwargs)

    train_env.goal_sampling_mode = base_env_exploration_goal_sampling_mode
    eval_env.goal_sampling_mode = base_env_evaluation_goal_sampling_mode

    if vae_path:
        vae = load_local_or_remote_file(vae_path)
    else:
        vae = get_n_train_vae(latent_dim=latent_dim,
                              env=eval_env,
                              **vae_n_vae_training_kwargs)

    train_env = VAEWrappedEnv(train_env,
                              vae,
                              imsize=train_env.imsize,
                              **vae_wrapped_env_kwargs)
    eval_env = VAEWrappedEnv(eval_env,
                             vae,
                             imsize=train_env.imsize,
                             **vae_wrapped_env_kwargs)

    obs_dim = train_env.observation_space.spaces[observation_key].low.size
    goal_dim = train_env.observation_space.spaces[desired_goal_key].low.size
    action_dim = train_env.action_space.low.size

    encoder = FlattenMlp(input_size=obs_dim,
                         output_size=latent_dim,
                         **encoder_kwargs)

    def make_qf():
        if have_no_disentangled_encoder:
            return FlattenMlp(
                input_size=obs_dim + goal_dim + action_dim,
                output_size=1,
                **qf_kwargs,
            )
        else:
            return DisentangledMlpQf(goal_processor=encoder,
                                     preprocess_obs_dim=obs_dim,
                                     action_dim=action_dim,
                                     qf_kwargs=qf_kwargs,
                                     vectorized=vectorized,
                                     **disentangled_qf_kwargs)

    qf1 = make_qf()
    qf2 = make_qf()
    target_qf1 = make_qf()
    target_qf2 = make_qf()

    policy = TanhGaussianPolicy(obs_dim=obs_dim + goal_dim,
                                action_dim=action_dim,
                                **policy_kwargs)

    replay_buffer = ObsDictRelabelingBuffer(
        env=train_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        vectorized=vectorized,
        **replay_buffer_kwargs)
    sac_trainer = SACTrainer(env=train_env,
                             policy=policy,
                             qf1=qf1,
                             qf2=qf2,
                             target_qf1=target_qf1,
                             target_qf2=target_qf2,
                             **twin_sac_trainer_kwargs)
    trainer = HERTrainer(sac_trainer)

    eval_path_collector = VAEWrappedEnvPathCollector(
        eval_env,
        MakeDeterministic(policy),
        max_path_length,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        goal_sampling_mode=vae_evaluation_goal_sampling_mode,
    )
    expl_path_collector = VAEWrappedEnvPathCollector(
        train_env,
        policy,
        max_path_length,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        goal_sampling_mode=vae_exploration_goal_sampling_mode,
    )
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=train_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        max_path_length=max_path_length,
        **algo_kwargs,
    )
    algorithm.to(ptu.device)

    if save_video:
        save_vf_heatmap = save_video_kwargs.get('save_vf_heatmap', True)

        if have_no_disentangled_encoder:

            def v_function(obs):
                action = policy.get_actions(obs)
                obs, action = ptu.from_numpy(obs), ptu.from_numpy(action)
                return qf1(obs, action)

            add_heatmap = partial(add_heatmap_img_to_o_dict,
                                  v_function=v_function)
        else:

            def v_function(obs):
                action = policy.get_actions(obs)
                obs, action = ptu.from_numpy(obs), ptu.from_numpy(action)
                return qf1(obs, action, return_individual_q_vals=True)

            add_heatmap = partial(
                add_heatmap_imgs_to_o_dict,
                v_function=v_function,
                vectorized=vectorized,
            )
        rollout_function = rf.create_rollout_function(
            rf.multitask_rollout,
            max_path_length=max_path_length,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
            full_o_postprocess_func=add_heatmap if save_vf_heatmap else None,
        )
        img_keys = ['v_vals'] + [
            'v_vals_dim_{}'.format(dim) for dim in range(latent_dim)
        ]
        eval_video_func = get_save_video_function(rollout_function,
                                                  eval_env,
                                                  MakeDeterministic(policy),
                                                  get_extra_imgs=partial(
                                                      get_extra_imgs,
                                                      img_keys=img_keys),
                                                  tag="eval",
                                                  **save_video_kwargs)
        train_video_func = get_save_video_function(rollout_function,
                                                   train_env,
                                                   policy,
                                                   get_extra_imgs=partial(
                                                       get_extra_imgs,
                                                       img_keys=img_keys),
                                                   tag="train",
                                                   **save_video_kwargs)
        algorithm.post_train_funcs.append(eval_video_func)
        algorithm.post_train_funcs.append(train_video_func)
    algorithm.train()
def _use_disentangled_encoder_distance(
        max_path_length,
        encoder_kwargs,
        disentangled_qf_kwargs,
        qf_kwargs,
        sac_trainer_kwargs,
        replay_buffer_kwargs,
        policy_kwargs,
        evaluation_goal_sampling_mode,
        exploration_goal_sampling_mode,
        algo_kwargs,
        env_id=None,
        env_class=None,
        env_kwargs=None,
        encoder_key_prefix='encoder',
        encoder_input_prefix='state',
        latent_dim=2,
        reward_mode=EncoderWrappedEnv.ENCODER_DISTANCE_REWARD,
        # Video parameters
        save_video=True,
        save_video_kwargs=None,
        save_vf_heatmap=True,
        **kwargs
):
    if save_video_kwargs is None:
        save_video_kwargs = {}
    if env_kwargs is None:
        env_kwargs = {}
    assert env_id or env_class
    vectorized = (
            reward_mode == EncoderWrappedEnv.VECTORIZED_ENCODER_DISTANCE_REWARD
    )

    if env_id:
        import gym
        import multiworld
        multiworld.register_all_envs()
        raw_train_env = gym.make(env_id)
        raw_eval_env = gym.make(env_id)
    else:
        raw_eval_env = env_class(**env_kwargs)
        raw_train_env = env_class(**env_kwargs)

    raw_train_env.goal_sampling_mode = exploration_goal_sampling_mode
    raw_eval_env.goal_sampling_mode = evaluation_goal_sampling_mode

    raw_obs_dim = (
            raw_train_env.observation_space.spaces['state_observation'].low.size
    )
    action_dim = raw_train_env.action_space.low.size

    encoder = FlattenMlp(
        input_size=raw_obs_dim,
        output_size=latent_dim,
        **encoder_kwargs
    )
    encoder = Identity()
    encoder.input_size = raw_obs_dim
    encoder.output_size = raw_obs_dim

    np_encoder = EncoderFromMlp(encoder)
    train_env = EncoderWrappedEnv(
        raw_train_env, np_encoder, encoder_input_prefix,
        key_prefix=encoder_key_prefix,
        reward_mode=reward_mode,
    )
    eval_env = EncoderWrappedEnv(
        raw_eval_env, np_encoder, encoder_input_prefix,
        key_prefix=encoder_key_prefix,
        reward_mode=reward_mode,
    )
    observation_key = '{}_observation'.format(encoder_key_prefix)
    desired_goal_key = '{}_desired_goal'.format(encoder_key_prefix)
    achieved_goal_key = '{}_achieved_goal'.format(encoder_key_prefix)
    obs_dim = train_env.observation_space.spaces[observation_key].low.size
    goal_dim = train_env.observation_space.spaces[desired_goal_key].low.size

    def make_qf():
        return DisentangledMlpQf(
            goal_processor=encoder,
            preprocess_obs_dim=obs_dim,
            action_dim=action_dim,
            qf_kwargs=qf_kwargs,
            vectorized=vectorized,
            **disentangled_qf_kwargs
        )
    qf1 = make_qf()
    qf2 = make_qf()
    target_qf1 = make_qf()
    target_qf2 = make_qf()

    policy = TanhGaussianPolicy(
        obs_dim=obs_dim + goal_dim,
        action_dim=action_dim,
        **policy_kwargs
    )

    replay_buffer = ObsDictRelabelingBuffer(
        env=train_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        vectorized=vectorized,
        **replay_buffer_kwargs
    )
    sac_trainer = SACTrainer(
        env=train_env,
        policy=policy,
        qf1=qf1,
        qf2=qf2,
        target_qf1=target_qf1,
        target_qf2=target_qf2,
        **sac_trainer_kwargs
    )
    trainer = HERTrainer(sac_trainer)

    eval_path_collector = GoalConditionedPathCollector(
        eval_env,
        MakeDeterministic(policy),
        max_path_length,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        goal_sampling_mode='env',
    )
    expl_path_collector = GoalConditionedPathCollector(
        train_env,
        policy,
        max_path_length,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        goal_sampling_mode='env',
    )
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=train_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        max_path_length=max_path_length,
        **algo_kwargs
    )
    algorithm.to(ptu.device)

    if save_video:
        def v_function(obs):
            action = policy.get_actions(obs)
            obs, action = ptu.from_numpy(obs), ptu.from_numpy(action)
            return qf1(obs, action, return_individual_q_vals=True)

        add_heatmap = partial(
            add_heatmap_imgs_to_o_dict,
            v_function=v_function,
            vectorized=vectorized,
        )
        rollout_function = rf.create_rollout_function(
            rf.multitask_rollout,
            max_path_length=max_path_length,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
            full_o_postprocess_func=add_heatmap if save_vf_heatmap else None,
        )
        img_keys = ['v_vals'] + [
            'v_vals_dim_{}'.format(dim) for dim
            in range(latent_dim)
        ]
        eval_video_func = get_save_video_function(
            rollout_function,
            eval_env,
            MakeDeterministic(policy),
            get_extra_imgs=partial(get_extra_imgs, img_keys=img_keys),
            tag="eval",
            **save_video_kwargs
        )
        train_video_func = get_save_video_function(
            rollout_function,
            train_env,
            policy,
            get_extra_imgs=partial(get_extra_imgs, img_keys=img_keys),
            tag="train",
            **save_video_kwargs
        )
        algorithm.post_train_funcs.append(eval_video_func)
        algorithm.post_train_funcs.append(train_video_func)
    algorithm.train()
def her_td3_experiment(variant):
    import multiworld.envs.mujoco
    import multiworld.envs.pygame
    import railrl.samplers.rollout_functions as rf
    import railrl.torch.pytorch_util as ptu
    from railrl.exploration_strategies.base import (
        PolicyWrappedWithExplorationStrategy)
    from railrl.exploration_strategies.epsilon_greedy import EpsilonGreedy
    from railrl.exploration_strategies.gaussian_strategy import GaussianStrategy
    from railrl.exploration_strategies.ou_strategy import OUStrategy
    from railrl.torch.grill.launcher import get_video_save_func
    from railrl.torch.her.her_td3 import HerTd3
    from railrl.data_management.obs_dict_replay_buffer import (
        ObsDictRelabelingBuffer)

    if 'env_id' in variant:
        env = gym.make(variant['env_id'])
    else:
        env = variant['env_class'](**variant['env_kwargs'])

    imsize = 84
    env = MujocoGymToMultiEnv(env.env)  # unwrap TimeLimit
    env = ImageEnv(env,
                   non_presampled_goal_img_is_garbage=True,
                   recompute_reward=False)

    observation_key = variant['observation_key']
    desired_goal_key = variant['desired_goal_key']
    variant['algo_kwargs']['her_kwargs']['observation_key'] = observation_key
    variant['algo_kwargs']['her_kwargs']['desired_goal_key'] = desired_goal_key
    if variant.get('normalize', False):
        raise NotImplementedError()

    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    replay_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    obs_dim = env.observation_space.spaces[observation_key].low.size
    action_dim = env.action_space.low.size
    goal_dim = env.observation_space.spaces[desired_goal_key].low.size
    exploration_type = variant['exploration_type']
    if exploration_type == 'ou':
        es = OUStrategy(action_space=env.action_space, **variant['es_kwargs'])
    elif exploration_type == 'gaussian':
        es = GaussianStrategy(
            action_space=env.action_space,
            **variant['es_kwargs'],
        )
    elif exploration_type == 'epsilon':
        es = EpsilonGreedy(
            action_space=env.action_space,
            **variant['es_kwargs'],
        )
    else:
        raise Exception("Invalid type: " + exploration_type)

    use_images_for_q = variant["use_images_for_q"]
    use_images_for_pi = variant["use_images_for_pi"]

    qs = []
    for i in range(2):
        if use_images_for_q:
            image_q = MergedCNN(input_width=imsize,
                                input_height=imsize,
                                output_size=1,
                                input_channels=3,
                                added_fc_input_size=action_dim,
                                **variant['cnn_params'])
            q = ImageStateQ(image_q, None)
        else:
            state_q = FlattenMlp(input_size=action_dim + goal_dim,
                                 output_size=1,
                                 **variant['qf_kwargs'])
            q = ImageStateQ(None, state_q)
        qs.append(q)
    qf1, qf2 = qs

    if use_images_for_pi:
        image_policy = CNNPolicy(
            input_width=imsize,
            input_height=imsize,
            output_size=action_dim,
            input_channels=3,
            **variant['cnn_params'],
            output_activation=torch.tanh,
        )
        policy = ImageStatePolicy(image_policy, None)
    else:
        state_policy = TanhMlpPolicy(input_size=goal_dim,
                                     output_size=action_dim,
                                     **variant['policy_kwargs'])
        policy = ImageStatePolicy(None, state_policy)

    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    algorithm = HerTd3(env,
                       qf1=qf1,
                       qf2=qf2,
                       policy=policy,
                       exploration_policy=exploration_policy,
                       replay_buffer=replay_buffer,
                       **variant['algo_kwargs'])
    if variant.get("save_video", False):
        rollout_function = rf.create_rollout_function(
            rf.multitask_rollout,
            max_path_length=algorithm.max_path_length,
            observation_key=algorithm.observation_key,
            desired_goal_key=algorithm.desired_goal_key,
        )
        video_func = get_video_save_func(
            rollout_function,
            env,
            policy,
            variant,
        )
        algorithm.post_epoch_funcs.append(video_func)
    algorithm.to(ptu.device)
    algorithm.train()
Пример #28
0
def relabeling_tsac_experiment(variant):
    if 'presample_goals' in variant:
        raise NotImplementedError()
    if 'env_id' in variant:
        eval_env = gym.make(variant['env_id'])
        expl_env = gym.make(variant['env_id'])
    else:
        eval_env = variant['env_class'](**variant['env_kwargs'])
        expl_env = variant['env_class'](**variant['env_kwargs'])

    observation_key = variant['observation_key']
    desired_goal_key = variant['desired_goal_key']
    if variant.get('normalize', False):
        raise NotImplementedError()

    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    replay_buffer = ObsDictRelabelingBuffer(
        env=eval_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    obs_dim = eval_env.observation_space.spaces['observation'].low.size
    action_dim = eval_env.action_space.low.size
    goal_dim = eval_env.observation_space.spaces['desired_goal'].low.size
    qf1 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    qf2 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    target_qf1 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    target_qf2 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                            output_size=1,
                            **variant['qf_kwargs'])
    policy = TanhGaussianPolicy(obs_dim=obs_dim + goal_dim,
                                action_dim=action_dim,
                                **variant['policy_kwargs'])
    max_path_length = variant['max_path_length']
    eval_policy = MakeDeterministic(policy)
    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['twin_sac_trainer_kwargs'])
    trainer = HERTrainer(trainer)
    eval_path_collector = GoalConditionedPathCollector(
        eval_env,
        eval_policy,
        max_path_length,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    expl_path_collector = GoalConditionedPathCollector(
        expl_env,
        policy,
        max_path_length,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    algorithm = TorchBatchRLAlgorithm(
        trainer=trainer,
        exploration_env=expl_env,
        evaluation_env=eval_env,
        exploration_data_collector=expl_path_collector,
        evaluation_data_collector=eval_path_collector,
        replay_buffer=replay_buffer,
        **variant['algo_kwargs'])
    # if variant.get("save_video", False):
    #     rollout_function = rf.create_rollout_function(
    #         rf.multitask_rollout,
    #         max_path_length=algorithm.max_path_length,
    #         observation_key=algorithm.observation_key,
    #         desired_goal_key=algorithm.desired_goal_key,
    #     )
    #     video_func = get_video_save_func(
    #         rollout_function,
    #         env,
    #         policy,
    #         variant,
    #     )
    #     algorithm.post_epoch_funcs.append(video_func)
    algorithm.to(ptu.device)
    algorithm.train()
Пример #29
0
def her_td3_experiment(variant):
    import gym
    import multiworld.envs.mujoco
    import multiworld.envs.pygame
    import railrl.samplers.rollout_functions as rf
    import railrl.torch.pytorch_util as ptu
    from railrl.exploration_strategies.base import (
        PolicyWrappedWithExplorationStrategy)
    from railrl.exploration_strategies.epsilon_greedy import EpsilonGreedy
    from railrl.exploration_strategies.gaussian_strategy import GaussianStrategy
    from railrl.exploration_strategies.ou_strategy import OUStrategy
    from railrl.torch.grill.launcher import get_video_save_func
    from railrl.demos.her_td3bc import HerTD3BC
    from railrl.torch.networks import FlattenMlp, TanhMlpPolicy
    from railrl.data_management.obs_dict_replay_buffer import (
        ObsDictRelabelingBuffer)

    if 'env_id' in variant:
        env = gym.make(variant['env_id'])
    else:
        env = variant['env_class'](**variant['env_kwargs'])

    observation_key = variant['observation_key']
    desired_goal_key = variant['desired_goal_key']
    variant['algo_kwargs']['her_kwargs']['observation_key'] = observation_key
    variant['algo_kwargs']['her_kwargs']['desired_goal_key'] = desired_goal_key
    if variant.get('normalize', False):
        raise NotImplementedError()

    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    replay_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    demo_train_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    demo_test_buffer = ObsDictRelabelingBuffer(
        env=env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    obs_dim = env.observation_space.spaces['observation'].low.size
    action_dim = env.action_space.low.size
    goal_dim = env.observation_space.spaces['desired_goal'].low.size
    exploration_type = variant['exploration_type']
    if exploration_type == 'ou':
        es = OUStrategy(action_space=env.action_space, **variant['es_kwargs'])
    elif exploration_type == 'gaussian':
        es = GaussianStrategy(
            action_space=env.action_space,
            **variant['es_kwargs'],
        )
    elif exploration_type == 'epsilon':
        es = EpsilonGreedy(
            action_space=env.action_space,
            **variant['es_kwargs'],
        )
    else:
        raise Exception("Invalid type: " + exploration_type)
    qf1 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    qf2 = FlattenMlp(input_size=obs_dim + action_dim + goal_dim,
                     output_size=1,
                     **variant['qf_kwargs'])
    policy = TanhMlpPolicy(input_size=obs_dim + goal_dim,
                           output_size=action_dim,
                           **variant['policy_kwargs'])
    exploration_policy = PolicyWrappedWithExplorationStrategy(
        exploration_strategy=es,
        policy=policy,
    )
    algorithm = HerTD3BC(env,
                         qf1=qf1,
                         qf2=qf2,
                         policy=policy,
                         exploration_policy=exploration_policy,
                         demo_train_buffer=demo_train_buffer,
                         demo_test_buffer=demo_test_buffer,
                         replay_buffer=replay_buffer,
                         demo_path=variant["demo_path"],
                         **variant['algo_kwargs'])
    if variant.get("save_video", False):
        rollout_function = rf.create_rollout_function(
            rf.multitask_rollout,
            max_path_length=algorithm.max_path_length,
            observation_key=algorithm.observation_key,
            desired_goal_key=algorithm.desired_goal_key,
        )
        video_func = get_video_save_func(
            rollout_function,
            env,
            policy,
            variant,
        )
        algorithm.post_epoch_funcs.append(video_func)
    algorithm.to(ptu.device)
    algorithm.train()
Пример #30
0
def experiment(variant):
    import gym
    from multiworld.envs.mujoco import register_custom_envs

    register_custom_envs()
    observation_key = 'state_observation'
    desired_goal_key = 'xy_desired_goal'
    expl_env = gym.make(variant['env_id'])
    eval_env = gym.make(variant['env_id'])

    achieved_goal_key = desired_goal_key.replace("desired", "achieved")
    replay_buffer = ObsDictRelabelingBuffer(
        env=eval_env,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
        achieved_goal_key=achieved_goal_key,
        **variant['replay_buffer_kwargs'])
    obs_dim = eval_env.observation_space.spaces['observation'].low.size
    action_dim = eval_env.action_space.low.size
    goal_dim = eval_env.observation_space.spaces['desired_goal'].low.size

    M = variant['layer_size']
    qf1 = FlattenMlp(
        input_size=obs_dim + action_dim + goal_dim,
        output_size=1,
        hidden_sizes=[M, M],
    )
    qf2 = FlattenMlp(
        input_size=obs_dim + action_dim + goal_dim,
        output_size=1,
        hidden_sizes=[M, M],
    )
    target_qf1 = FlattenMlp(
        input_size=obs_dim + action_dim + goal_dim,
        output_size=1,
        hidden_sizes=[M, M],
    )
    target_qf2 = FlattenMlp(
        input_size=obs_dim + action_dim + goal_dim,
        output_size=1,
        hidden_sizes=[M, M],
    )
    policy = TanhGaussianPolicy(
        obs_dim=obs_dim + goal_dim,
        action_dim=action_dim,
        hidden_sizes=[M, M],
    )
    eval_policy = MakeDeterministic(policy)
    eval_path_collector = GoalConditionedPathCollector(
        eval_env,
        eval_policy,
        observation_key=observation_key,
        desired_goal_key=desired_goal_key,
    )
    trainer = SACTrainer(env=eval_env,
                         policy=policy,
                         qf1=qf1,
                         qf2=qf2,
                         target_qf1=target_qf1,
                         target_qf2=target_qf2,
                         **variant['trainer_kwargs'])
    trainer = HERTrainer(trainer)
    if variant['collection_mode'] == 'online':
        expl_step_collector = GoalConditionedStepCollector(
            expl_env,
            policy,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
        )
        algorithm = TorchOnlineRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_step_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    else:
        expl_path_collector = GoalConditionedPathCollector(
            expl_env,
            policy,
            observation_key=observation_key,
            desired_goal_key=desired_goal_key,
        )
        algorithm = TorchBatchRLAlgorithm(
            trainer=trainer,
            exploration_env=expl_env,
            evaluation_env=eval_env,
            exploration_data_collector=expl_path_collector,
            evaluation_data_collector=eval_path_collector,
            replay_buffer=replay_buffer,
            **variant['algo_kwargs'])
    algorithm.to(ptu.device)
    algorithm.train()