Пример #1
0
def test_sampler(penv: ParallelEnv, is_recurrent: bool) -> None:
    NWORKERS = penv.nworkers
    rnns = (TeState(torch.arange(NWORKERS))
            if is_recurrent else recurrent.DummyRnn.DUMMY_STATE)
    storage = RolloutStorage(NSTEP, penv.nworkers, Device())
    storage.set_initial_state(penv.reset(), rnn_state=rnns)
    policy_dist = CategoricalDist(ACTION_DIM)
    for _ in range(NSTEP):
        state, reward, done, _ = penv.step([None] * NWORKERS)
        value = torch.rand(NWORKERS, dtype=torch.float32)
        policy = policy_dist(torch.rand(NWORKERS, ACTION_DIM))
        storage.push(state,
                     reward,
                     done,
                     rnn_state=rnns,
                     policy=policy,
                     value=value)
    MINIBATCH = 12
    rnn_test = set()
    for batch in RolloutSampler(storage, penv, MINIBATCH):
        length = len(batch.states)
        assert length == MINIBATCH
        if isinstance(batch.rnn_init, TeState):
            assert batch.rnn_init.h.size(0) == MINIBATCH // NSTEP
            rnn_test.update(batch.rnn_init.h.cpu().tolist())
    if is_recurrent:
        assert len(rnn_test) > NWORKERS - (MINIBATCH // NSTEP)
    penv.close()
Пример #2
0
def test_oc_storage() -> None:
    penv = DummyParallelEnv(lambda: DummyEnv(array_dim=(16, 16)), 6)
    NWORKERS = penv.nworkers
    NOPTIONS = 4
    storage = AOCRolloutStorage(NSTEP, penv.nworkers, Device(), NOPTIONS)
    storage.set_initial_state(penv.reset())
    policy_dist = CategoricalDist(ACTION_DIM)
    for _ in range(NSTEP):
        state, reward, done, _ = penv.step([None] * NWORKERS)
        value = torch.rand(NWORKERS, NOPTIONS)
        policy = policy_dist(torch.rand(NWORKERS, ACTION_DIM))
        options = torch.randint(NOPTIONS, (NWORKERS, ),
                                device=storage.device.unwrapped)
        opt_terminals = torch.randint(2, (NWORKERS, ),
                                      device=storage.device.unwrapped).byte()
        storage.push(
            state,
            reward,
            done,
            options=options,
            opt_terminals=opt_terminals,
            value=value,
            policy=policy,
            epsilon=0.5,
        )
    next_value = torch.randn(NWORKERS, NOPTIONS).max(dim=-1)[0]
    storage.set_ac_returns(next_value, 0.99, 0.01)
    assert tuple(storage.beta_adv.shape) == (NSTEP, NWORKERS)
    penv.close()
Пример #3
0
 def __init__(
         self,
         input_dim: Tuple[int, int, int],
         action_dim: int,
         conv_channels: List[int] = [32, 32, 32],
         conv_args: List[tuple] = [(4, 2, 1), (3, 1, 1), (3, 1, 1)],
         h_dim: int = 256,
         z_dim: int = 64,
         output_channels: int = 0,
         device: Device = Device(),
 ) -> None:
     super(ActorCriticNet, self).__init__()
     cnn_hidden = calc_cnn_hidden(conv_args, *input_dim[1:])
     conved = cnn_hidden[0] * cnn_hidden[1] * conv_channels[-1]
     self.encoder = nn.Sequential(
         nn.Conv2d(input_dim[0], conv_channels[0], *conv_args[0]),
         nn.ReLU(True),
         nn.Conv2d(conv_channels[0], conv_channels[1], *conv_args[1]),
         nn.ReLU(True),
         nn.Conv2d(conv_channels[1], conv_channels[2], *conv_args[2]),
         nn.ReLU(True),
         Flatten(),
         nn.Linear(conved, h_dim),
         nn.ReLU(True),
     )
     self.z_fc = LinearHead(h_dim, z_dim)
     self.logvar_fc = LinearHead(h_dim, z_dim)
     self.actor = LinearHead(z_dim, action_dim,
                             Initializer(weight_init=orthogonal(0.01)))
     self.critic = LinearHead(z_dim, 1)
     if output_channels == 0:
         output_channels = input_dim[0]
     self.decoder = nn.Sequential(
         LinearHead(z_dim, h_dim),
         nn.ReLU(True),
         LinearHead(h_dim, conved),
         nn.ReLU(True),
         UnFlatten(cnn_hidden),
         nn.ConvTranspose2d(conv_channels[2], conv_channels[1],
                            *conv_args[2]),
         nn.ReLU(True),
         nn.ConvTranspose2d(conv_channels[1], conv_channels[0],
                            *conv_args[1]),
         nn.ReLU(True),
         nn.ConvTranspose2d(conv_channels[0], output_channels,
                            *conv_args[0]),
     )
     CNN_INIT(self.encoder)
     CNN_INIT(self.decoder)
     self.encoder = device.data_parallel(self.encoder)
     self.decoder = device.data_parallel(self.decoder)
     self.device = device
     self._state_dim = input_dim
     self.policy_head = CategoricalHead(action_dim=action_dim)
     self.to(device.unwrapped)
     self._rnn = DummyRnn()
Пример #4
0
def test_dim(net_gen: callable, input_dim: tuple) -> None:
    device = Device()
    vae_net = net_gen(input_dim, ACTION_DIM, device=device)
    batch = torch.randn(BATCH_SIZE, *input_dim)
    with torch.no_grad():
        vae, policy, value = vae_net(device.tensor(batch))
    assert vae.x.shape == torch.Size((BATCH_SIZE, *input_dim))
    assert policy.dist.probs.shape == torch.Size((BATCH_SIZE, ACTION_DIM))
    assert value.shape == torch.Size((BATCH_SIZE, ))
    print(vae_net)
Пример #5
0
def test_storage_and_irew() -> None:
    penv = DummyParallelEnv(lambda: DummyEnv(array_dim=(16, 16)), 6)
    NSTEPS = 4
    ACTION_DIM = 3
    NWORKERS = penv.nworkers
    states = penv.reset()
    storage = IntValueRolloutStorage(NSTEPS, NWORKERS, Device(), 0.99,
                                     Device(use_cpu=True))
    storage.set_initial_state(states)
    policy_head = CategoricalDist(ACTION_DIM)
    for _ in range(NSTEPS):
        state, reward, done, _ = penv.step([None] * NWORKERS)
        value = torch.randn(NWORKERS)
        pvalue = torch.randn(NWORKERS)
        policy = policy_head(torch.randn(NWORKERS).view(-1, 1))
        storage.push(state,
                     reward,
                     done,
                     value=value,
                     policy=policy,
                     pvalue=pvalue)
    rewards = torch.randn(NWORKERS * NSTEPS)
    storage.calc_int_returns(torch.randn(NWORKERS),
                             rewards,
                             gamma=0.99,
                             lambda_=0.95)
    batch = storage.batch_states(penv)
    batch_shape = torch.Size((NSTEPS * NWORKERS, ))
    assert batch.shape == torch.Size((*batch_shape, 16, 16))
    MINIBATCH = 12
    sampler = rnd.rollout.RNDRolloutSampler(
        RolloutSampler(storage, penv, MINIBATCH),
        storage,
        torch.randn(NSTEPS * NWORKERS),
        1.0,
        1.0,
    )
    assert sampler.int_returns.shape == batch_shape
    assert sampler.int_values.shape == batch_shape
    assert sampler.advantages.shape == batch_shape
    for batch in sampler:
        assert len(batch.states) == MINIBATCH
    penv.close()
Пример #6
0
def test_ffmodel_for_atari() -> None:
    atari = gym.make("BreakoutNoFrameskip-v0")
    acvp_netfn = models.prepare_ff()
    d = Device()
    acvp_net = acvp_netfn((3, 210, 160), 4, d)
    states, actions = [], []
    atari.reset()
    for _ in range(10):
        s, _, _, _ = atari.step(0)
        states.append(s.transpose(2, 0, 1))
        actions.append(0)
    states = d.tensor(states)
    actions = d.tensor(actions, dtype=torch.long)
    s_decoded = acvp_net(states, actions)
    assert tuple(s_decoded.shape) == (10, 3, 210, 160)
Пример #7
0
 def __init__(
     self,
     body: NetworkBlock,
     actor_head: NetworkBlock,
     critic_head: NetworkBlock,
     policy_dist: PolicyDist,
     recurrent_body: RnnBlock = DummyRnn(),
     device: Device = Device(),
     int_critic_head: Optional[NetworkBlock] = None,
 ) -> None:
     super().__init__(body, actor_head, critic_head, policy_dist,
                      recurrent_body, device)
     self.int_critic_head = (copy.deepcopy(self.critic_head) if
                             int_critic_head is None else int_critic_head)
     self.int_critic_head.to(device.unwrapped)
Пример #8
0
def test_tcnet(state_dim: tuple):
    BATCH_SIZE = 10
    NUM_OPTIONS = 3

    if len(state_dim) > 1:
        net_fn = termination_critic.tc_conv_shared(num_options=NUM_OPTIONS)
    else:
        net_fn = termination_critic.tc_fc_shared(num_options=NUM_OPTIONS)

    net = net_fn(state_dim, 1, Device())
    input1 = torch.randn(BATCH_SIZE, *state_dim)
    input2 = torch.randn(BATCH_SIZE, *state_dim)
    out = net(input1, input2)
    assert tuple(out.beta.dist.logits.shape) == (BATCH_SIZE, NUM_OPTIONS)
    assert tuple(out.p.shape) == (BATCH_SIZE, NUM_OPTIONS)
    assert tuple(out.p_mu.shape) == (BATCH_SIZE, NUM_OPTIONS)
    assert tuple(out.baseline.shape) == (BATCH_SIZE, NUM_OPTIONS)
Пример #9
0
def test_save_and_load(irew_gen) -> None:
    c = config()
    c._int_reward_gen = irew_gen
    agent = rnd.RNDAgent(c)
    agent.irew_gen.gen_rewards(torch.randn(4 * 4, 2, 84, 84))
    nonep = agent.irew_gen.rff_rms.mean.cpu().numpy()
    savedir = Path("Results/Test")
    if not savedir.exists():
        savedir.mkdir(parents=True)
    agent.save("agent.pth", savedir)
    agent.close()
    c.device = Device(use_cpu=True)
    agent = rnd.RNDAgent(c)
    agent.load("agent.pth", savedir)
    nonep_new = agent.irew_gen.rff_rms.mean.cpu().numpy()
    assert_array_almost_equal(nonep, nonep_new)
    agent.close()
Пример #10
0
def test_storage(penv: ParallelEnv) -> None:
    NWORKERS = penv.nworkers
    storage = RolloutStorage(NSTEP, penv.nworkers, Device())
    storage.set_initial_state(penv.reset())
    policy_dist = CategoricalDist(ACTION_DIM)
    for _ in range(NSTEP):
        state, reward, done, _ = penv.step([None] * NWORKERS)
        value = torch.rand(NWORKERS, dtype=torch.float32)
        policy = policy_dist(torch.rand(NWORKERS, ACTION_DIM))
        storage.push(state, reward, done, value=value, policy=policy)
    batch = storage.batch_states(penv)
    batch_shape = torch.Size((NSTEP * NWORKERS, ))
    assert batch.shape == torch.Size((*batch_shape, 16, 16))
    sampler = RolloutSampler(storage, penv, 10)
    assert sampler.actions.shape == batch_shape
    assert sampler.returns.shape == batch_shape
    assert sampler.masks.shape == batch_shape
    assert sampler.values.shape == batch_shape
    assert sampler.old_log_probs.shape == batch_shape
    penv.close()
Пример #11
0
 def __init__(
     self,
     actor_body: NetworkBlock,
     critic_body: NetworkBlock,
     action_dim: int,
     action_coef: float = 1.0,
     device: Device = Device(),
     init: Initializer = Initializer(weight_init=kaiming_uniform(a=3**0.5)),
 ) -> None:
     super().__init__()
     self.actor = nn.Sequential(
         actor_body,
         LinearHead(actor_body.output_dim, action_dim, init=init),
         nn.Tanh(),
     )
     self.critic = nn.Sequential(
         critic_body, LinearHead(critic_body.output_dim, 1, init=init))
     self.to(device.unwrapped)
     self.action_coef = action_coef
     self.device = device
Пример #12
0
def test_rnn(rnn_gen: Callable[[int, int], RnnBlock]) -> None:
    TIME_STEP = 10
    BATCH_SIZE = 5
    INPUT_DIM = 20
    OUTPUT_DIM = 3
    rnn = rnn_gen(INPUT_DIM, OUTPUT_DIM)
    device = Device()
    rnn.to(device.unwrapped)
    hidden = rnn.initial_state(BATCH_SIZE, device)
    cached_inputs = []

    for i in range(TIME_STEP):
        inputs = torch.randn(BATCH_SIZE, INPUT_DIM, device=device.unwrapped)
        cached_inputs.append(inputs.detach())
        out, hidden = rnn(inputs, hidden)
        assert tuple(out.shape) == (BATCH_SIZE, OUTPUT_DIM)
    batch_inputs = torch.cat(cached_inputs)
    hidden = rnn.initial_state(BATCH_SIZE, device)
    out, _ = rnn(batch_inputs, hidden)
    assert tuple(out.shape) == (TIME_STEP * BATCH_SIZE, OUTPUT_DIM)
Пример #13
0
    def __init__(
        self,
        input_dim: Sequence[int],
        action_dim: int,
        hidden_dim: int = 2048,
        conv_channels: List[int] = [64, 128, 128, 128],
        encoder_args: List[tuple] = [(8, 2, (0, 1)), (6, 2, 1), (6, 2, 1),
                                     (4, 2)],
        decoder_args: List[tuple] = [(4, 2), (6, 2, 1), (6, 2, 1),
                                     (8, 2, (0, 1))],
        device: Device = Device(),
        init: Initializer = Initializer(orthogonal(nonlinearity="relu")),
    ) -> None:
        super().__init__()

        in_channel, height, width = input_dim
        channels = [in_channel] + conv_channels
        self.conv = init.make_list([
            nn.Conv2d(channels[i], channels[i + 1], *encoder_args[i])
            for i in range(len(channels) - 1)
        ])

        conved_dim = (np.prod(calc_cnn_hidden(encoder_args, height, width)) *
                      channels[-1])
        self.fc_enc = nn.Linear(conved_dim, hidden_dim)

        self.w_enc = nn.Linear(hidden_dim, hidden_dim, bias=False)
        self.w_action = nn.Linear(action_dim, hidden_dim, bias=False)

        self.fc_action_trans = nn.Linear(hidden_dim, hidden_dim)

        self.fc_dec = nn.Linear(hidden_dim, conved_dim)

        channels.reverse()
        self.deconv = init.make_list([
            nn.ConvTranspose2d(channels[i], channels[i + 1], *decoder_args[i])
            for i in range(len(channels) - 1)
        ])
        self.action_dim = action_dim
        self.device = device
        self.to(device.unwrapped)
Пример #14
0
    CNNBodyWithoutFC,
    GruBlock,
    LstmBlock,
    actor_critic,
    termination_critic,
)
from rainy.net.init import Initializer, kaiming_normal, kaiming_uniform
from rainy.utils import Device

ACTION_DIM = 10


@pytest.mark.parametrize(
    "net, state_dim, batch_size",
    [
        (actor_critic.fc_shared()((4, ), ACTION_DIM, Device()), (4, ), 32),
        (
            actor_critic.conv_shared()((4, 84, 84), ACTION_DIM, Device()),
            (4, 84, 84),
            32,
        ),
        (
            actor_critic.conv_shared(rnn=GruBlock)(
                (4, 84, 84), ACTION_DIM, Device()),
            (4, 84, 84),
            32,
        ),
        (
            actor_critic.conv_shared(rnn=LstmBlock)(
                (4, 84, 84), ACTION_DIM, Device()),
            (4, 84, 84),
Пример #15
0
import numpy as np
import pytest
from rainy.net import actor_critic, DqnConv, GruBlock, LstmBlock
from rainy.net.init import Initializer, kaiming_normal, kaiming_uniform
from rainy.utils import Device
from test_env import DummyEnv
import torch
from typing import Optional, Tuple


ACTION_DIM = 10


@pytest.mark.parametrize('net, state_dim, batch_size', [
    (actor_critic.fc_shared()((4,), ACTION_DIM, Device()), (4,), 32),
    (actor_critic.ac_conv()((4, 84, 84), ACTION_DIM, Device()), (4, 84, 84), 32),
    (actor_critic.ac_conv(rnn=GruBlock)((4, 84, 84), ACTION_DIM, Device()), (4, 84, 84), 32),
    (actor_critic.ac_conv(rnn=LstmBlock)((4, 84, 84), ACTION_DIM, Device()), (4, 84, 84), 32),
    (actor_critic.impala_conv()((4, 84, 84), ACTION_DIM, Device()), (4, 84, 84), 32),
])
def test_acnet(net: actor_critic.ActorCriticNet, state_dim: tuple, batch_size: int) -> None:
    assert net.state_dim == state_dim
    assert net.action_dim == ACTION_DIM
    env = DummyEnv()
    states = np.stack([env.step(None)[0].to_array(state_dim) for _ in range(batch_size)])
    policy, values, _ = net(states)
    batch_size = torch.Size([batch_size])
    assert policy.action().shape == batch_size
    assert policy.log_prob().shape == batch_size
    assert policy.entropy().shape == batch_size
    assert values.shape == batch_size
Пример #16
0
def test_eps_greedy():
    eg = EpsGreedy(1.0, LinearCooler(1.0, 0.1, int(100)))
    value_pred = value.fc()((100, ), 10, Device(use_cpu=True))
    for _ in range(0, 100):
        eg.select_action(np.arange(100), value_pred)
    assert eg.epsilon == 0.1