def __init__(self, *args: any, shuffle=False, **kwargs): super().__init__(**kwargs) self.options: List[any] = [*args] self.working_copy: List[any] = [*self.options] self.shuffle = shuffle if self.shuffle: shuffler(self.working_copy)
def __init__(self, classifierName, posFile, negFile): self._name = classifierName pos = pd.read_table(posFile,delimiter='\n',header=None, names=["text"] ) pos['sentiment'] = 1 #1 for positive neg = pd.read_table(negFile,delimiter='\n',header=None, names=["text"] ) neg['sentiment'] = 2 #2 for negative pos_words=[] for s in pos['text']: short_p_words.extend(word_tokenize(str(s))) neg_words=[] for s in neg['text']: neg_words.extend(word_tokenize(str(s))) all_words=[] for w in pos_words: all_words.append(w.lower()) for w in neg_words: all_words.append(w.lower()) all_words = nltk.FreqDist(all_words) self.word_features = list(all_words.keys())[:int(len(all_words)*0.8)] documents = pos.get_values() documents = np.concatenate((documents,neg.get_values()),axis=0) #shuffle the documents random.shuffler(documents) #prepare X and T, classification self.X = document[:,0:1] self.T = documents[:,1:2] if classifierName == 'NaiveBayesClassifier': self.classifier = nltk.NaiveBayesClassifier elif classifierName == 'MaxEntropy': classifier = nltk.MaxentClassifier elif classifierName == 'MultinomialNB': self.classifier = SklearnClassifier(MultinomialNB()) elif classifierName == 'BernoulliNB': self.classifier = SklearnClassifier(BernoulliNB()) elif classifierName == 'LogisticRegression': self.classifier = SklearnClassifier(LogisticRegression()) elif classifierName == 'SGDClassifier': self.classifier = SklearnClassifier(SGDClassifier()) elif classifierName == 'LinearSVC': self.classifier = SklearnClassifier(SGDClassifier()) elif classifierName == 'NuSVC': self.classifier = SklearnClassifier(SGDClassifier()) else: raise ValueError('Not a valid classifier name')
def exhausted(self) -> bool: result = len(self.options) == 0 # auto-reset if result: self.working_copy = [*self.options] if self.shuffle: shuffler(self.working_copy) return result
def shuffle(self, value): """ queue.shuffle(True) turns on shuffling for this queue. All tracks that havn't been played will now be shuffled the current playing track is not affected. queue.shuffle(False) turns off shuffling - this will now play all songs in order from the current song in their original order (even if already played). """ if value is self._shuffle_tracks: return self._shuffle_tracks = value if value: q = collections.deque(self._urls) shuffler(q) self._queued = q else: # find current in urls i = self._urls.index(self.current) # set queue to all songs after current remaining_urls = self._urls[i + 1:] q = collections.deque(remaining_urls)
# from src.modules.classes import * import src.modules.loss_funcs as lf from src.modules.helper_functions import * from src.modules.eval_funcs import * import src.modules.reporting as rpt # %% ENERGY DISTRIBUTIONS particle = 'muon_neutrino' dataset = get_project_root() + get_path_from_root( '/CubeML/data/oscnext-genie-level5-v01-01-pass2') train, val, test = split_files_in_dataset(dataset, particle=particle) # * Get random files rand_train = np.arange(len(train)) shuffler(rand_train) energy_train = [] n_in_file_train = [] rand_val = np.arange(len(val)) shuffler(rand_val) energy_val = [] n_in_file_val = [] rand_test = np.arange(len(test)) shuffler(rand_test) energy_test = [] n_in_file_test = [] n_wanted = 50000 key = 'raw/true_primary_time'
def _create_loop_queue(self): if self._loop_tracks is True: q = collections.deque(self._urls) if self._shuffle_tracks is True: shuffler(q) self._loop_queue = q