def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple( "SyncBatchNorm", [ "num_features", "eps", "momentum", "affine", "track_running_stats", "process_group", ], ) self.params = self.template_fn( num_features=Param(name="num_features", default=None), eps=FloatParam(name="eps", default=1e-05), momentum=FloatParam(name="momentum", default=0.1), affine=BinaryParam(name="affine", default=False, true_prob=0.5), track_running_stats=BinaryParam(name="track_running_stats", default=False, true_prob=0.5), process_group=Param(name="process_group", default=None), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple("RReLU", ["lower", "upper", "inplace"]) self.params = self.template_fn( lower=FloatParam(name="lower", default=0.125), upper=FloatParam(name="upper", default=0.3333333333333333), inplace=BinaryParam(name="inplace", default=False, true_prob=0.5), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple("CrossMapLRN2d", ["size", "alpha", "beta", "k"]) self.params = self.template_fn( size=Param(name="size", default=None), alpha=FloatParam(name="alpha", default=0.0001), beta=FloatParam(name="beta", default=0.75), k=IntParam(name="k", default=1), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple("Softshrink", ["lambd"]) self.params = self.template_fn( lambd=FloatParam(name="lambd", default=0.5)) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple("CosineSimilarity", ["dim", "eps"]) self.params = self.template_fn( dim=IntParam(name="dim", default=1), eps=FloatParam(name="eps", default=1e-08), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple("FeatureAlphaDropout", ["p", "inplace"]) self.params = self.template_fn( p=FloatParam(name="p", default=0.5), inplace=BinaryParam(name="inplace", default=False, true_prob=0.5), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple("Softplus", ["beta", "threshold"]) self.params = self.template_fn( beta=FloatParam(name="beta", default=1), threshold=IntParam(name="threshold", default=20), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple("PReLU", ["num_parameters", "init"]) self.params = self.template_fn( num_parameters=IntParam(name="num_parameters", default=1), init=FloatParam(name="init", default=0.25), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple("CELU", ["alpha", "inplace"]) self.params = self.template_fn( alpha=FloatParam(name="alpha", default=1.0), inplace=BinaryParam(name="inplace", default=False, true_prob=0.5), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple("LeakyReLU", ["negative_slope", "inplace"]) self.params = self.template_fn( negative_slope=FloatParam(name="negative_slope", default=0.01), inplace=BinaryParam(name="inplace", default=False, true_prob=0.5), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple("PairwiseDistance", ["p", "eps", "keepdim"]) self.params = self.template_fn( p=IntParam(name="p", default=2.0), eps=FloatParam(name="eps", default=1e-06), keepdim=BinaryParam(name="keepdim", default=False, true_prob=0.5), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple("ConstantPad1d", ["padding", "value"]) self.params = self.template_fn( padding=TupleParam( name="padding", size=1, limits=((0,), (0,)), default=(0,) ), value=FloatParam(name="value", default=0.0), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple( "GroupNorm", ["num_groups", "num_channels", "eps", "affine"]) self.params = self.template_fn( num_groups=Param(name="num_groups", default=None), num_channels=Param(name="num_channels", default=None), eps=FloatParam(name="eps", default=1e-05), affine=BinaryParam(name="affine", default=False, true_prob=0.5), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple( "LayerNorm", ["normalized_shape", "eps", "elementwise_affine"]) self.params = self.template_fn( normalized_shape=Param(name="normalized_shape", default=None), eps=FloatParam(name="eps", default=1e-05), elementwise_affine=BinaryParam(name="elementwise_affine", default=False, true_prob=0.5), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple( "TransformerDecoderLayer", ['d_model', 'nhead', 'dim_feedforward', 'dropout', 'activation']) self.params = self.template_fn( d_model=Param(name="d_model", default=None), nhead=Param(name="nhead", default=None), dim_feedforward=IntParam(name="dim_feedforward", default=2048), dropout=FloatParam(name="dropout", default=0.1), activation=ChoiceParam(name="activation", choices=("relu", ), cprobs=(1, ), default="relu"), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple( "TripletMarginLoss", [ "margin", "p", "eps", "swap", "size_average", "reduce", "reduction" ], ) self.params = self.template_fn( margin=IntParam(name="margin", default=1.0), p=IntParam(name="p", default=2.0), eps=FloatParam(name="eps", default=1e-06), swap=BinaryParam(name="swap", default=False, true_prob=0.5), size_average=Param(name="size_average", default=None), reduce=Param(name="reduce", default=None), reduction=ChoiceParam(name="reduction", choices=("mean", ), cprobs=(1, ), default="mean"), ) for k, v in kwargs.items(): getattr(self.params, k).val = v
def __init__(self, **kwargs): _Factory.__init__(self) self.template_fn = namedtuple( "PoissonNLLLoss", [ "log_input", "full", "size_average", "eps", "reduce", "reduction" ], ) self.params = self.template_fn( log_input=BinaryParam(name="log_input", default=True, true_prob=0.5), full=BinaryParam(name="full", default=False, true_prob=0.5), size_average=Param(name="size_average", default=None), eps=FloatParam(name="eps", default=1e-08), reduce=Param(name="reduce", default=None), reduction=ChoiceParam(name="reduction", choices=("mean", ), cprobs=(1, ), default="mean"), ) for k, v in kwargs.items(): getattr(self.params, k).val = v