Пример #1
0
def upsample(inputdata, Fs_init, Fs_higher, method="univariate", intfac=False, debug=False):
    starttime = time.time()
    if Fs_higher <= Fs_init:
        print("upsample: target frequency must be higher than initial frequency")
        sys.exit()

    # upsample
    orig_x = np.linspace(0.0, (1.0 / Fs_init) * len(inputdata), num=len(inputdata), endpoint=False)
    endpoint = orig_x[-1] - orig_x[0]
    ts_higher = 1.0 / Fs_higher
    numresamppts = int(endpoint // ts_higher + 1)
    if intfac:
        numresamppts = int(Fs_higher // Fs_init) * len(inputdata)
    else:
        numresamppts = int(endpoint // ts_higher + 1)
    upsampled_x = np.arange(0.0, ts_higher * numresamppts, ts_higher)
    upsampled_y = doresample(orig_x, inputdata, upsampled_x, method=method)
    initfilter = tide_filt.NoncausalFilter(
        filtertype="arb", transferfunc="trapezoidal", debug=debug
    )
    stopfreq = np.min([1.1 * Fs_init / 2.0, Fs_higher / 2.0])
    initfilter.setfreqs(0.0, 0.0, Fs_init / 2.0, stopfreq)
    upsampled_y = initfilter.apply(Fs_higher, upsampled_y)
    if debug:
        print("upsampling took", time.time() - starttime, "seconds")
    return upsampled_y
Пример #2
0
def motionregress(
    themotionfilename,
    thedataarray,
    tr,
    orthogonalize=True,
    motstart=0,
    motend=-1,
    motionhp=None,
    motionlp=None,
    position=True,
    deriv=True,
    derivdelayed=False,
    debug=False,
):
    print("regressing out motion")
    motionregressors, motionregressorlabels = tide_io.calcmotregressors(
        tide_io.readmotion(themotionfilename),
        position=position,
        deriv=deriv,
        derivdelayed=derivdelayed,
    )
    if motend == -1:
        motionregressors = motionregressors[:, motstart:]
    else:
        motionregressors = motionregressors[:, motstart:motend]
    if (motionlp is not None) or (motionhp is not None):
        mothpfilt = tide_filt.NoncausalFilter(filtertype="arb",
                                              transferfunc="trapezoidal")
        if motionlp is None:
            motionlp = 0.5 / tr
        else:
            motionlp = np.min([0.5 / tr, motionlp])
        if motionhp is None:
            motionhp = 0.0
        mothpfilt.setfreqs(0.9 * motionhp, motionhp, motionlp,
                           np.min([0.5 / tr, motionlp * 1.1]))
        for i in range(motionregressors.shape[0]):
            motionregressors[i, :] = mothpfilt.apply(1.0 / tr,
                                                     motionregressors[i, :])
    if orthogonalize:
        motionregressors = tide_fit.gram_schmidt(motionregressors)
        initregressors = len(motionregressorlabels)
        motionregressorlabels = []
        for theregressor in range(motionregressors.shape[0]):
            motionregressorlabels.append(
                "orthogmotion_{:02d}".format(theregressor))
        print("After orthogonalization, {0} of {1} regressors remain.".format(
            len(motionregressorlabels), initregressors))

    print("start motion filtering")
    filtereddata = confoundglm(thedataarray, motionregressors, debug=debug)
    print()
    print("motion filtering complete")
    return motionregressors, motionregressorlabels, filtereddata
Пример #3
0
 def __init__(
     self,
     windowfunc="hamming",
     norm=True,
     madnorm=False,
     smoothingtime=-1.0,
     bins=20,
     sigma=0.25,
     *args,
     **kwargs,
 ):
     self.windowfunc = windowfunc
     self.norm = norm
     self.madnorm = madnorm
     self.bins = bins
     self.sigma = sigma
     self.smoothingtime = smoothingtime
     self.smoothingfilter = tide_filt.NoncausalFilter(filtertype="arb")
     if self.smoothingtime > 0.0:
         self.smoothingfilter.setfreqs(0.0, 0.0, 1.0 / self.smoothingtime,
                                       1.0 / self.smoothingtime)
     super(MutualInformationator, self).__init__(*args, **kwargs)
Пример #4
0
def envdetect(Fs, inputdata, cutoff=0.25):
    """

    Parameters
    ----------
    Fs : float
        Sample frequency in Hz.
    inputdata : float array
        Data to be envelope detected
    cutoff : float
        Highest possible modulation frequency

    Returns
    -------
    envelope : float array
        The envelope function

    """
    demeaned = inputdata - np.mean(inputdata)
    sigabs = abs(demeaned)
    theenvbpf = tide_filt.NoncausalFilter(filtertype="arb")
    theenvbpf.setfreqs(0.0, 0.0, cutoff, 1.1 * cutoff)
    return theenvbpf.apply(Fs, sigabs)
Пример #5
0
def test_nullsimfunc(debug=False, display=False):
    # make the lfo filter
    lfofilter = tide_filt.NoncausalFilter(filtertype="lfo")

    # make the starting regressor
    timestep = 1.5
    Fs = 1.0 / timestep
    # sourcelen = 1200
    # sourcedata = lfofilter.apply(Fs, np.random.rand(sourcelen))
    sourcedata = tide_io.readvecs(
        os.path.join(get_test_data_path(), "fmri_globalmean.txt"))[0]
    sourcelen = len(sourcedata)
    numpasses = 1

    if display:
        plt.figure()
        plt.plot(sourcedata)
        plt.show()

    thexcorr = tide_corr.fastcorrelate(sourcedata, sourcedata)
    xcorrlen = len(thexcorr)
    xcorr_x = (
        np.linspace(0.0, xcorrlen, xcorrlen, endpoint=False) * timestep -
        (xcorrlen * timestep) / 2.0 + timestep / 2.0)

    if display:
        plt.figure()
        plt.plot(xcorr_x, thexcorr)
        plt.show()

    corrzero = xcorrlen // 2
    lagmin = -10
    lagmax = 10
    lagmininpts = int((-lagmin / timestep) - 0.5)
    lagmaxinpts = int((lagmax / timestep) + 0.5)

    searchstart = int(np.round(corrzero + lagmin / timestep))
    searchend = int(np.round(corrzero + lagmax / timestep))

    optiondict = {
        "numestreps": 10000,
        "showprogressbar": debug,
        "detrendorder": 3,
        "windowfunc": "hamming",
        "corrweighting": "None",
        "nprocs": 1,
        "widthlimit": 1000.0,
        "bipolar": False,
        "fixdelay": False,
        "peakfittype": "gauss",
        "lagmin": lagmin,
        "lagmax": lagmax,
        "absminsigma": 0.25,
        "absmaxsigma": 25.0,
        "edgebufferfrac": 0.0,
        "lthreshval": 0.0,
        "uthreshval": 1.0,
        "debug": False,
        "enforcethresh": True,
        "lagmod": 1000.0,
        "searchfrac": 0.5,
        "permutationmethod": "shuffle",
        "hardlimit": True,
    }
    theprefilter = tide_filt.NoncausalFilter("lfo")
    theCorrelator = tide_classes.Correlator(
        Fs=Fs,
        ncprefilter=theprefilter,
        detrendorder=optiondict["detrendorder"],
        windowfunc=optiondict["windowfunc"],
        corrweighting=optiondict["corrweighting"],
    )

    thefitter = tide_classes.SimilarityFunctionFitter(
        lagmod=optiondict["lagmod"],
        lthreshval=optiondict["lthreshval"],
        uthreshval=optiondict["uthreshval"],
        bipolar=optiondict["bipolar"],
        lagmin=optiondict["lagmin"],
        lagmax=optiondict["lagmax"],
        absmaxsigma=optiondict["absmaxsigma"],
        absminsigma=optiondict["absminsigma"],
        debug=optiondict["debug"],
        peakfittype=optiondict["peakfittype"],
        searchfrac=optiondict["searchfrac"],
        enforcethresh=optiondict["enforcethresh"],
        hardlimit=optiondict["hardlimit"],
    )

    if debug:
        print(optiondict)

    theCorrelator.setlimits(lagmininpts, lagmaxinpts)
    theCorrelator.setreftc(sourcedata)
    dummy, trimmedcorrscale, dummy = theCorrelator.getfunction()
    thefitter.setcorrtimeaxis(trimmedcorrscale)
    histograms = []
    for thenprocs in [1, -1]:
        for i in range(numpasses):
            corrlist = tide_nullsimfunc.getNullDistributionDatax(
                sourcedata,
                Fs,
                theCorrelator,
                thefitter,
                despeckle_thresh=5.0,
                fixdelay=False,
                fixeddelayvalue=0.0,
                numestreps=optiondict["numestreps"],
                nprocs=thenprocs,
                showprogressbar=optiondict["showprogressbar"],
                chunksize=1000,
                permutationmethod=optiondict["permutationmethod"],
            )
            tide_io.writenpvecs(
                corrlist, os.path.join(get_test_temp_path(),
                                       "corrdistdata.txt"))

            # calculate percentiles for the crosscorrelation from the distribution data
            histlen = 250
            thepercentiles = [0.95, 0.99, 0.995]

            pcts, pcts_fit, histfit = tide_stats.sigFromDistributionData(
                corrlist, histlen, thepercentiles)
            if debug:
                tide_stats.printthresholds(
                    pcts,
                    thepercentiles,
                    "Crosscorrelation significance thresholds from data:",
                )
                tide_stats.printthresholds(
                    pcts_fit,
                    thepercentiles,
                    "Crosscorrelation significance thresholds from fit:",
                )

            (
                thehist,
                peakheight,
                peakloc,
                peakwidth,
                centerofmass,
            ) = tide_stats.makehistogram(np.abs(corrlist),
                                         histlen,
                                         therange=[0.0, 1.0])
            histograms.append(thehist)
            thestore = np.zeros((2, len(thehist[0])), dtype="float64")
            thestore[0, :] = (thehist[1][1:] + thehist[1][0:-1]) / 2.0
            thestore[1, :] = thehist[0][-histlen:]
            if display:
                plt.figure()
                plt.plot(thestore[0, :], thestore[1, :])
                plt.show()

            # tide_stats.makeandsavehistogram(corrlist, histlen, 0,
            # os.path.join(get_test_temp_path(), 'correlationhist'),
            # displaytitle='Null correlation histogram',
            # displayplots=display, refine=False)
            assert True
Пример #6
0
def test_calcsimfunc(debug=False, display=False):
    # make the lfo filter
    lfofilter = tide_filt.NoncausalFilter(filtertype="lfo")

    # make some data
    oversampfactor = 2
    numvoxels = 100
    numtimepoints = 500
    tr = 0.72
    Fs = 1.0 / tr
    init_fmri_x = np.linspace(
        0.0, numtimepoints, numtimepoints, endpoint=False) * tr
    oversampfreq = oversampfactor * Fs
    os_fmri_x = np.linspace(0.0, numtimepoints * oversampfactor, numtimepoints
                            * oversampfactor) * (1.0 / oversampfreq)

    theinputdata = np.zeros((numvoxels, numtimepoints), dtype=np.float64)
    meanval = np.zeros((numvoxels), dtype=np.float64)

    testfreq = 0.075
    msethresh = 1e-3

    # make the starting regressor
    sourcedata = np.sin(2.0 * np.pi * testfreq * os_fmri_x)
    numpasses = 1

    # make the timeshifted data
    shiftstart = -5.0
    shiftend = 5.0
    voxelshifts = np.linspace(shiftstart, shiftend, numvoxels, endpoint=False)
    for i in range(numvoxels):
        theinputdata[i, :] = np.sin(2.0 * np.pi * testfreq *
                                    (init_fmri_x - voxelshifts[i]))

    if display:
        plt.figure()
        plt.plot(sourcedata)
        plt.show()
    genlagtc = tide_resample.FastResampler(os_fmri_x, sourcedata)

    thexcorr = tide_corr.fastcorrelate(sourcedata, sourcedata)
    xcorrlen = len(thexcorr)
    xcorr_x = (np.linspace(0.0, xcorrlen, xcorrlen, endpoint=False) * tr -
               (xcorrlen * tr) / 2.0 + tr / 2.0)

    if display:
        plt.figure()
        plt.plot(xcorr_x, thexcorr)
        plt.show()

    corrzero = xcorrlen // 2
    lagmin = -10.0
    lagmax = 10.0
    lagmininpts = int((-lagmin * oversampfreq) - 0.5)
    lagmaxinpts = int((lagmax * oversampfreq) + 0.5)

    searchstart = int(np.round(corrzero + lagmin / tr))
    searchend = int(np.round(corrzero + lagmax / tr))
    numcorrpoints = lagmaxinpts + lagmininpts
    corrout = np.zeros((numvoxels, numcorrpoints), dtype=np.float64)
    lagmask = np.zeros((numvoxels), dtype=np.float64)
    failimage = np.zeros((numvoxels), dtype=np.float64)
    lagtimes = np.zeros((numvoxels), dtype=np.float64)
    lagstrengths = np.zeros((numvoxels), dtype=np.float64)
    lagsigma = np.zeros((numvoxels), dtype=np.float64)
    gaussout = np.zeros((numvoxels, numcorrpoints), dtype=np.float64)
    windowout = np.zeros((numvoxels, numcorrpoints), dtype=np.float64)
    R2 = np.zeros((numvoxels), dtype=np.float64)
    lagtc = np.zeros((numvoxels, numtimepoints), dtype=np.float64)

    optiondict = {
        "numestreps": 10000,
        "interptype": "univariate",
        "showprogressbar": debug,
        "detrendorder": 3,
        "windowfunc": "hamming",
        "corrweighting": "None",
        "nprocs": 1,
        "widthlimit": 1000.0,
        "bipolar": False,
        "fixdelay": False,
        "peakfittype": "gauss",
        "lagmin": lagmin,
        "lagmax": lagmax,
        "absminsigma": 0.25,
        "absmaxsigma": 25.0,
        "edgebufferfrac": 0.0,
        "lthreshval": 0.0,
        "uthreshval": 1.1,
        "debug": False,
        "enforcethresh": True,
        "lagmod": 1000.0,
        "searchfrac": 0.5,
        "mp_chunksize": 1000,
        "oversampfactor": oversampfactor,
        "despeckle_thresh": 5.0,
        "zerooutbadfit": False,
        "permutationmethod": "shuffle",
        "hardlimit": True,
    }

    theprefilter = tide_filt.NoncausalFilter("lfo")
    theCorrelator = tide_classes.Correlator(
        Fs=oversampfreq,
        ncprefilter=theprefilter,
        detrendorder=optiondict["detrendorder"],
        windowfunc=optiondict["windowfunc"],
        corrweighting=optiondict["corrweighting"],
    )

    thefitter = tide_classes.SimilarityFunctionFitter(
        lagmod=optiondict["lagmod"],
        lthreshval=optiondict["lthreshval"],
        uthreshval=optiondict["uthreshval"],
        bipolar=optiondict["bipolar"],
        lagmin=optiondict["lagmin"],
        lagmax=optiondict["lagmax"],
        absmaxsigma=optiondict["absmaxsigma"],
        absminsigma=optiondict["absminsigma"],
        debug=optiondict["debug"],
        peakfittype=optiondict["peakfittype"],
        zerooutbadfit=optiondict["zerooutbadfit"],
        searchfrac=optiondict["searchfrac"],
        enforcethresh=optiondict["enforcethresh"],
        hardlimit=optiondict["hardlimit"],
    )

    if debug:
        print(optiondict)

    theCorrelator.setlimits(lagmininpts, lagmaxinpts)
    theCorrelator.setreftc(sourcedata)
    dummy, trimmedcorrscale, dummy = theCorrelator.getfunction()
    thefitter.setcorrtimeaxis(trimmedcorrscale)

    for thenprocs in [1, -1]:
        for i in range(numpasses):
            (
                voxelsprocessed_cp,
                theglobalmaxlist,
                trimmedcorrscale,
            ) = tide_calcsimfunc.correlationpass(
                theinputdata,
                sourcedata,
                theCorrelator,
                init_fmri_x,
                os_fmri_x,
                lagmininpts,
                lagmaxinpts,
                corrout,
                meanval,
                nprocs=thenprocs,
                oversampfactor=optiondict["oversampfactor"],
                interptype=optiondict["interptype"],
                showprogressbar=optiondict["showprogressbar"],
                chunksize=optiondict["mp_chunksize"],
            )

            if display:
                plt.figure()
                plt.plot(trimmedcorrscale, corrout[numvoxels // 2, :], "k")
                plt.show()

            voxelsprocessed_fc = tide_simfuncfit.fitcorr(
                genlagtc,
                init_fmri_x,
                lagtc,
                trimmedcorrscale,
                thefitter,
                corrout,
                lagmask,
                failimage,
                lagtimes,
                lagstrengths,
                lagsigma,
                gaussout,
                windowout,
                R2,
                nprocs=optiondict["nprocs"],
                fixdelay=optiondict["fixdelay"],
                showprogressbar=optiondict["showprogressbar"],
                chunksize=optiondict["mp_chunksize"],
                despeckle_thresh=optiondict["despeckle_thresh"],
            )
            if display:
                plt.figure()
                plt.plot(voxelshifts, "k")
                plt.plot(lagtimes, "r")
                plt.show()

            if debug:
                for i in range(numvoxels):
                    print(
                        voxelshifts[i],
                        lagtimes[i],
                        lagstrengths[i],
                        lagsigma[i],
                        failimage[i],
                    )

            assert mse(voxelshifts, lagtimes) < msethresh
Пример #7
0
def dotwostepresample(
    orig_x, orig_y, intermed_freq, final_freq, method="univariate", antialias=True, debug=False,
):
    """

    Parameters
    ----------
    orig_x
    orig_y
    intermed_freq
    final_freq
    method
    debug

    Returns
    -------
    resampled_y

    """
    if intermed_freq <= final_freq:
        print("intermediate frequency must be higher than final frequency")
        sys.exit()

    # upsample
    starttime = time.time()
    endpoint = orig_x[-1] - orig_x[0]
    init_freq = len(orig_x) / endpoint
    intermed_ts = 1.0 / intermed_freq
    numresamppts = int(endpoint // intermed_ts + 1)
    intermed_x = intermed_ts * np.linspace(0.0, 1.0 * numresamppts, numresamppts, endpoint=False)
    intermed_y = doresample(orig_x, orig_y, intermed_x, method=method)
    if debug:
        print(
            "init_freq, intermed_freq, final_freq:", init_freq, intermed_freq, final_freq,
        )
        print("intermed_ts, numresamppts:", intermed_ts, numresamppts)
        print("upsampling took", time.time() - starttime, "seconds")

    # antialias and ringstop filter
    if antialias:
        starttime = time.time()
        aafilterfreq = np.min([final_freq, init_freq]) / 2.0
        aafilter = tide_filt.NoncausalFilter(
            filtertype="arb", transferfunc="trapezoidal", debug=debug
        )
        aafilter.setfreqs(0.0, 0.0, 0.95 * aafilterfreq, aafilterfreq)
        antialias_y = aafilter.apply(intermed_freq, intermed_y)
        if debug:
            print("antialiasing took", time.time() - starttime, "seconds")
    else:
        antialias_y = intermed_y

    # downsample
    starttime = time.time()
    final_ts = 1.0 / final_freq
    numresamppts = int(np.ceil(endpoint / final_ts))
    # final_x = np.arange(0.0, final_ts * numresamppts, final_ts)
    final_x = final_ts * np.linspace(0.0, 1.0 * numresamppts, numresamppts, endpoint=False)
    resampled_y = doresample(intermed_x, antialias_y, final_x, method=method)
    if debug:
        print("downsampling took", time.time() - starttime, "seconds")
    return resampled_y
Пример #8
0
def doresample(orig_x, orig_y, new_x, method="cubic", padlen=0, antialias=False, debug=False):
    """
    Resample data from one spacing to another.  By default, does not apply any antialiasing filter.

    Parameters
    ----------
    orig_x
    orig_y
    new_x
    method
    padlen

    Returns
    -------

    """
    tstep = orig_x[1] - orig_x[0]
    if padlen > 0:
        rawxpad = np.linspace(0.0, padlen * tstep, num=padlen, endpoint=False)
        frontpad = rawxpad + orig_x[0] - padlen * tstep
        backpad = rawxpad + orig_x[-1] + tstep
        pad_x = np.concatenate((frontpad, orig_x, backpad))
        pad_y = tide_filt.padvec(orig_y, padlen=padlen)
    else:
        pad_x = orig_x
        pad_y = orig_y

    if debug:
        print("padlen=", padlen)
        print("tstep=", tstep)
        print("lens:", len(pad_x), len(pad_y))
        print(pad_x)
        print(pad_y)
        fig = pl.figure()
        ax = fig.add_subplot(111)
        ax.set_title("Original and padded vector")
        pl.plot(orig_x, orig_y + 1.0, pad_x, pad_y)
        pl.show()

    # antialias and ringstop filter
    init_freq = len(pad_x) / (pad_x[-1] - pad_x[0])
    final_freq = len(new_x) / (new_x[-1] - new_x[0])
    if antialias and (init_freq > final_freq):
        aafilterfreq = final_freq / 2.0
        aafilter = tide_filt.NoncausalFilter(filtertype="arb", transferfunc="trapezoidal")
        aafilter.setfreqs(0.0, 0.0, 0.95 * aafilterfreq, aafilterfreq)
        pad_y = aafilter.apply(init_freq, pad_y)

    if method == "cubic":
        cj = signal.cspline1d(pad_y)
        # return tide_filt.unpadvec(
        #   np.float64(signal.cspline1d_eval(cj, new_x, dx=(orig_x[1] - orig_x[0]), x0=orig_x[0])), padlen=padlen)
        return signal.cspline1d_eval(cj, new_x, dx=(orig_x[1] - orig_x[0]), x0=orig_x[0])
    elif method == "quadratic":
        qj = signal.qspline1d(pad_y)
        # return tide_filt.unpadvec(
        #    np.float64(signal.qspline1d_eval(qj, new_x, dx=(orig_x[1] - orig_x[0]), x0=orig_x[0])), padlen=padlen)
        return signal.qspline1d_eval(qj, new_x, dx=(orig_x[1] - orig_x[0]), x0=orig_x[0])
    elif method == "univariate":
        interpolator = sp.interpolate.UnivariateSpline(pad_x, pad_y, k=3, s=0)  # s=0 interpolates
        # return tide_filt.unpadvec(np.float64(interpolator(new_x)), padlen=padlen)
        return np.float64(interpolator(new_x))
    else:
        print("invalid interpolation method")
        return None
Пример #9
0
def test_delayestimation(display=False, debug=False):

    # set the number of MKL threads to use
    if mklexists:
        print("disabling MKL")
        mkl.set_num_threads(1)

    # set parameters
    Fs = 10.0
    numpoints = 5000
    numlocs = 21
    refnum = int(numlocs // 2)
    timestep = 0.228764
    oversampfac = 2
    detrendorder = 1
    oversampfreq = Fs * oversampfac
    corrtr = 1.0 / oversampfreq
    smoothingtime = 1.0
    bipolar = False
    interptype = "univariate"
    lagmod = 1000.0
    lagmin = -20.0
    lagmax = 20.0
    lagmininpts = int((-lagmin / corrtr) - 0.5)
    lagmaxinpts = int((lagmax / corrtr) + 0.5)
    peakfittype = "gauss"
    corrweighting = "None"
    similaritymetric = "hybrid"
    windowfunc = "hamming"
    chunksize = 5
    pedestal = 100.0

    # set up the filter
    theprefilter = tide_filt.NoncausalFilter("arb",
                                             transferfunc="brickwall",
                                             debug=False)
    theprefilter.setfreqs(0.009, 0.01, 0.15, 0.16)

    # construct the various test waveforms
    timepoints = np.linspace(0.0,
                             numpoints / Fs,
                             num=numpoints,
                             endpoint=False)
    oversamptimepoints = np.linspace(0.0,
                                     numpoints / Fs,
                                     num=oversampfac * numpoints,
                                     endpoint=False)
    waveforms = np.zeros((numlocs, numpoints), dtype=np.float64)
    paramlist = [
        [0.314, 0.055457, 0.0],
        [-0.723, 0.08347856, np.pi],
        [-0.834, 0.1102947, 0.0],
        [1.0, 0.13425, 0.5],
    ]
    offsets = np.zeros(numlocs, dtype=np.float64)
    amplitudes = np.ones(numlocs, dtype=np.float64)
    for i in range(numlocs):
        offsets[i] = timestep * (i - refnum)
        waveforms[i, :] = multisine(timepoints - offsets[i],
                                    paramlist) + pedestal
    if display:
        fig = plt.figure()
        ax = fig.add_subplot(1, 1, 1)
        for i in range(numlocs):
            ax.plot(timepoints, waveforms[i, :])
        plt.show()

    threshval = pedestal / 4.0
    waveforms = numpy2shared(waveforms, np.float64)

    referencetc = tide_resample.doresample(timepoints,
                                           waveforms[refnum, :],
                                           oversamptimepoints,
                                           method=interptype)
    referencetc = theprefilter.apply(oversampfreq, referencetc)
    referencetc = tide_math.corrnormalize(referencetc,
                                          detrendorder=detrendorder,
                                          windowfunc=windowfunc)

    # set up theCorrelator
    if debug:
        print("\n\nsetting up theCorrelator")
    theCorrelator = tide_classes.Correlator(
        Fs=oversampfreq,
        ncprefilter=theprefilter,
        detrendorder=detrendorder,
        windowfunc=windowfunc,
        corrweighting=corrweighting,
        debug=True,
    )
    theCorrelator.setreftc(
        np.zeros((oversampfac * numpoints), dtype=np.float64))
    theCorrelator.setlimits(lagmininpts, lagmaxinpts)
    dummy, trimmedcorrscale, dummy = theCorrelator.getfunction()
    corroutlen = np.shape(trimmedcorrscale)[0]
    internalvalidcorrshape = (numlocs, corroutlen)
    corrout, dummy, dummy = allocshared(internalvalidcorrshape, np.float64)
    meanval, dummy, dummy = allocshared((numlocs), np.float64)
    if debug:
        print("corrout shape:", corrout.shape)
        print("theCorrelator: corroutlen=", corroutlen)

    # set up theMutualInformationator
    if debug:
        print("\n\nsetting up theMutualInformationator")
    theMutualInformationator = tide_classes.MutualInformationator(
        Fs=oversampfreq,
        smoothingtime=smoothingtime,
        ncprefilter=theprefilter,
        detrendorder=detrendorder,
        windowfunc=windowfunc,
        madnorm=False,
        lagmininpts=lagmininpts,
        lagmaxinpts=lagmaxinpts,
        debug=False,
    )

    theMutualInformationator.setreftc(
        np.zeros((oversampfac * numpoints), dtype=np.float64))
    theMutualInformationator.setlimits(lagmininpts, lagmaxinpts)

    # set up thefitter
    if debug:
        print("\n\nsetting up thefitter")
    thefitter = tide_classes.SimilarityFunctionFitter(
        lagmod=lagmod,
        lthreshval=0.0,
        uthreshval=1.0,
        bipolar=bipolar,
        lagmin=lagmin,
        lagmax=lagmax,
        absmaxsigma=10000.0,
        absminsigma=0.01,
        debug=False,
        peakfittype=peakfittype,
    )

    lagtc, dummy, dummy = allocshared(waveforms.shape, np.float64)
    fitmask, dummy, dummy = allocshared((numlocs), "uint16")
    failreason, dummy, dummy = allocshared((numlocs), "uint32")
    lagtimes, dummy, dummy = allocshared((numlocs), np.float64)
    lagstrengths, dummy, dummy = allocshared((numlocs), np.float64)
    lagsigma, dummy, dummy = allocshared((numlocs), np.float64)
    gaussout, dummy, dummy = allocshared(internalvalidcorrshape, np.float64)
    windowout, dummy, dummy = allocshared(internalvalidcorrshape, np.float64)
    rvalue, dummy, dummy = allocshared((numlocs), np.float64)
    r2value, dummy, dummy = allocshared((numlocs), np.float64)
    fitcoff, dummy, dummy = allocshared((numlocs), np.float64)
    fitNorm, dummy, dummy = allocshared((numlocs), np.float64)
    R2, dummy, dummy = allocshared((numlocs), np.float64)
    movingsignal, dummy, dummy = allocshared(waveforms.shape, np.float64)
    filtereddata, dummy, dummy = allocshared(waveforms.shape, np.float64)

    for nprocs in [4, 1]:
        # call correlationpass
        if debug:
            print("\n\ncalling correlationpass")
            print("waveforms shape:", waveforms.shape)
        (
            voxelsprocessed_cp,
            theglobalmaxlist,
            trimmedcorrscale,
        ) = tide_calcsimfunc.correlationpass(
            waveforms[:, :],
            referencetc,
            theCorrelator,
            timepoints,
            oversamptimepoints,
            lagmininpts,
            lagmaxinpts,
            corrout,
            meanval,
            nprocs=nprocs,
            alwaysmultiproc=False,
            oversampfactor=oversampfac,
            interptype=interptype,
            showprogressbar=False,
            chunksize=chunksize,
        )
        if debug:
            print(voxelsprocessed_cp, len(theglobalmaxlist),
                  len(trimmedcorrscale))

        if display:
            fig = plt.figure()
            ax = fig.add_subplot(1, 1, 1)
            for i in range(numlocs):
                ax.plot(trimmedcorrscale, corrout[i, :])
            plt.show()

        # call peakeval
        if debug:
            print("\n\ncalling peakeval")
        voxelsprocessed_pe, thepeakdict = tide_peakeval.peakevalpass(
            waveforms[:, :],
            referencetc,
            timepoints,
            oversamptimepoints,
            theMutualInformationator,
            trimmedcorrscale,
            corrout,
            nprocs=nprocs,
            alwaysmultiproc=False,
            bipolar=bipolar,
            oversampfactor=oversampfac,
            interptype=interptype,
            showprogressbar=False,
            chunksize=chunksize,
        )

        if debug:
            for key in thepeakdict:
                print(key, thepeakdict[key])

        # call thefitter
        if debug:
            print("\n\ncalling fitter")
        thefitter.setfunctype(similaritymetric)
        thefitter.setcorrtimeaxis(trimmedcorrscale)
        genlagtc = tide_resample.FastResampler(timepoints,
                                               waveforms[refnum, :])

        if display:
            fig = plt.figure()
            ax = fig.add_subplot(1, 1, 1)
        if nprocs == 1:
            proctype = "singleproc"
        else:
            proctype = "multiproc"
        for peakfittype in ["fastgauss", "quad", "fastquad", "gauss"]:
            thefitter.setpeakfittype(peakfittype)
            voxelsprocessed_fc = tide_simfuncfit.fitcorr(
                genlagtc,
                timepoints,
                lagtc,
                trimmedcorrscale,
                thefitter,
                corrout,
                fitmask,
                failreason,
                lagtimes,
                lagstrengths,
                lagsigma,
                gaussout,
                windowout,
                R2,
                peakdict=thepeakdict,
                nprocs=nprocs,
                alwaysmultiproc=False,
                fixdelay=None,
                showprogressbar=False,
                chunksize=chunksize,
                despeckle_thresh=100.0,
                initiallags=None,
            )
            if debug:
                print(voxelsprocessed_fc)

            if debug:
                print("\npeakfittype:", peakfittype)
                for i in range(numlocs):
                    print(
                        "location",
                        i,
                        ":",
                        offsets[i],
                        lagtimes[i],
                        lagtimes[i] - offsets[i],
                        lagstrengths[i],
                        lagsigma[i],
                    )
                if display:
                    ax.plot(offsets, lagtimes, label=peakfittype)
            if checkfits(lagtimes, offsets, tolerance=0.01):
                print(proctype, peakfittype, " lagtime: pass")
                assert True
            else:
                print(proctype, peakfittype, " lagtime: fail")
                assert False
            if checkfits(lagstrengths, amplitudes, tolerance=0.05):
                print(proctype, peakfittype, " lagstrength: pass")
                assert True
            else:
                print(proctype, peakfittype, " lagstrength: fail")
                assert False

    if display:
        ax.legend()
        plt.show()

    filteredwaveforms, dummy, dummy = allocshared(waveforms.shape, np.float64)
    for i in range(numlocs):
        filteredwaveforms[i, :] = theprefilter.apply(Fs, waveforms[i, :])

    for nprocs in [4, 1]:
        voxelsprocessed_glm = tide_glmpass.glmpass(
            numlocs,
            waveforms[:, :],
            threshval,
            lagtc,
            meanval,
            rvalue,
            r2value,
            fitcoff,
            fitNorm,
            movingsignal,
            filtereddata,
            nprocs=nprocs,
            alwaysmultiproc=False,
            showprogressbar=False,
            mp_chunksize=chunksize,
        )

        if nprocs == 1:
            proctype = "singleproc"
        else:
            proctype = "multiproc"
        diffsignal = filtereddata
        fig = plt.figure()
        ax = fig.add_subplot(1, 1, 1)
        # ax.plot(timepoints, filtereddata[refnum, :], label='filtereddata')
        ax.plot(oversamptimepoints, referencetc, label="referencetc")
        ax.plot(timepoints, movingsignal[refnum, :], label="movingsignal")
        ax.legend()
        plt.show()

        print(proctype, "glmpass", np.mean(diffsignal),
              np.max(np.fabs(diffsignal)))
Пример #10
0
def postprocessfilteropts(args, debug=False):
    # configure the filter
    # set the trapezoidal flag, if using
    try:
        thetype = args.filtertype
    except AttributeError:
        args.filtertype = "trapezoidal"
    try:
        theorder = args.filtorder
    except AttributeError:
        args.filtorder = DEFAULT_FILTER_ORDER
    try:
        thepadseconds = args.padseconds
    except AttributeError:
        args.padseconds = DEFAULT_PAD_SECONDS

    # if passvec, or passvec and stopvec, are set, we are going set up an arbpass filter
    args.arbvec = None
    if debug:
        print("before preprocessing")
        print("\targs.arbvec:", args.arbvec)
        print("\targs.passvec:", args.passvec)
        print("\targs.stopvec:", args.stopvec)
        print("\targs.filterband:", args.filterband)
    if args.stopvec is not None:
        if args.passvec is not None:
            args.arbvec = [
                args.passvec[0], args.passvec[1], args.stopvec[0],
                args.stopvec[1]
            ]
        else:
            raise ValueError(
                "--filterfreqs must be used if --filterstopfreqs is specified")
    else:
        if args.passvec is not None:
            args.arbvec = [
                args.passvec[0],
                args.passvec[1],
                args.passvec[0] * 0.95,
                args.passvec[1] * 1.05,
            ]
    if args.arbvec is not None:
        # NOTE - this vector is LOWERPASS, UPPERPASS, LOWERSTOP, UPPERSTOP
        # setfreqs expects LOWERSTOP, LOWERPASS, UPPERPASS, UPPERSTOP
        theprefilter = tide_filt.NoncausalFilter(
            "arb",
            transferfunc=args.filtertype,
        )
        theprefilter.setfreqs(args.arbvec[2], args.arbvec[0], args.arbvec[1],
                              args.arbvec[3])
    else:
        theprefilter = tide_filt.NoncausalFilter(
            args.filterband,
            transferfunc=args.filtertype,
            padtime=args.padseconds,
        )

    # set the butterworth order
    theprefilter.setbutterorder(args.filtorder)

    if debug:
        print("before preprocessing")
        print("\targs.arbvec:", args.arbvec)
        print("\targs.passvec:", args.passvec)
        print("\targs.stopvec:", args.stopvec)
        print("\targs.filterband:", args.filterband)

    (
        args.lowerstop,
        args.lowerpass,
        args.upperpass,
        args.upperstop,
    ) = theprefilter.getfreqs()

    if debug:
        print("after getfreqs")
        print("\targs.arbvec:", args.arbvec)

    return args, theprefilter