Пример #1
0
def run(model: Text, endpoints: Text, connector: Text = None,
        credentials: Text = None, **kwargs: Dict):
    """Runs a Rasa model.

    Args:
        model: Path to model archive.
        endpoints: Path to endpoints file.
        connector: Connector which should be use (overwrites `credentials`
        field).
        credentials: Path to channel credentials file.
        **kwargs: Additional arguments which are passed to
        `rasa_core.run.serve_application`.

    """
    import rasa_core.run

    model_path = get_model(model)
    _agent = create_agent(model_path, endpoints)

    if not connector and not credentials:
        channel = "cmdline"
        logger.info("No chat connector configured, falling back to the "
                    "command line. Use `rasa configure channel` to connect"
                    "the bot to e.g. facebook messenger.")
    else:
        channel = connector

    kwargs = minimal_kwargs(kwargs, rasa_core.run.serve_application)
    rasa_core.run.serve_application(_agent, channel=channel,
                                    credentials_file=credentials,
                                    **kwargs)
    shutil.rmtree(model_path)
Пример #2
0
def perform_nlu_cross_validation(config: Text, nlu: Text,
                                 kwargs: Optional[Dict[Text, Any]]):
    import rasa.nlu.config
    from rasa.nlu.test import (
        drop_intents_below_freq,
        cross_validate,
        return_results,
        return_entity_results,
    )

    kwargs = kwargs or {}
    folds = int(kwargs.get("folds", 3))
    nlu_config = rasa.nlu.config.load(config)
    data = rasa.nlu.training_data.load_data(nlu)
    data = drop_intents_below_freq(data, cutoff=folds)
    kwargs = minimal_kwargs(kwargs, cross_validate)
    results, entity_results = cross_validate(data, folds, nlu_config, **kwargs)
    logger.info("CV evaluation (n={})".format(folds))

    if any(results):
        logger.info("Intent evaluation results")
        return_results(results.train, "train")
        return_results(results.test, "test")
    if any(entity_results):
        logger.info("Entity evaluation results")
        return_entity_results(entity_results.train, "train")
        return_entity_results(entity_results.test, "test")
Пример #3
0
def test_nlu(model: Text, nlu_data: Text, **kwargs: Dict):
    from rasa_nlu.test import run_evaluation

    unpacked_model = get_model(model)
    nlu_model = os.path.join(unpacked_model, "nlu")
    kwargs = minimal_kwargs(kwargs, run_evaluation)
    run_evaluation(nlu_data, nlu_model, **kwargs)
Пример #4
0
def test_core(
    model: Optional[Text] = None,
    stories: Optional[Text] = None,
    endpoints: Optional[Text] = None,
    output: Text = DEFAULT_RESULTS_PATH,
    kwargs: Optional[Dict] = None,
):
    import rasa.core.test
    import rasa.core.utils as core_utils
    from rasa.nlu import utils as nlu_utils
    from rasa.model import get_model
    from rasa.core.interpreter import NaturalLanguageInterpreter
    from rasa.core.agent import Agent

    _endpoints = core_utils.AvailableEndpoints.read_endpoints(endpoints)

    if kwargs is None:
        kwargs = {}

    if output:
        nlu_utils.create_dir(output)

    unpacked_model = get_model(model)
    if unpacked_model is None:
        print_error(
            "Unable to test: could not find a model. Use 'rasa train' to train a "
            "Rasa model."
        )
        return

    core_path, nlu_path = get_model_subdirectories(unpacked_model)

    if not os.path.exists(core_path):
        print_error(
            "Unable to test: could not find a Core model. Use 'rasa train' to "
            "train a model."
        )

    use_e2e = kwargs["e2e"] if "e2e" in kwargs else False

    _interpreter = RegexInterpreter()
    if use_e2e:
        if os.path.exists(nlu_path):
            _interpreter = NaturalLanguageInterpreter.create(nlu_path, _endpoints.nlu)
        else:
            print_warning(
                "No NLU model found. Using default 'RegexInterpreter' for end-to-end "
                "evaluation."
            )

    _agent = Agent.load(unpacked_model, interpreter=_interpreter)

    kwargs = minimal_kwargs(kwargs, rasa.core.test, ["stories", "agent"])

    loop = asyncio.get_event_loop()
    loop.run_until_complete(
        rasa.core.test(stories, _agent, out_directory=output, **kwargs)
    )
Пример #5
0
def test_nlu(model: Optional[Text], nlu_data: Optional[Text], kwargs: Optional[Dict]):
    from rasa.nlu.test import run_evaluation

    unpacked_model = get_model(model)
    nlu_model = os.path.join(unpacked_model, "nlu")

    if os.path.exists(nlu_model):
        kwargs = minimal_kwargs(kwargs, run_evaluation, ["data_path", "model"])
        run_evaluation(nlu_data, nlu_model, **kwargs)
Пример #6
0
def test_core(
    model: Optional[Text] = None,
    stories: Optional[Text] = None,
    endpoints: Optional[Text] = None,
    output: Text = DEFAULT_RESULTS_PATH,
    model_path: Optional[Text] = None,
    kwargs: Optional[Dict] = None,
):
    import rasa.core.test
    import rasa.core.utils as core_utils
    from rasa.nlu import utils as nlu_utils
    from rasa.model import get_model
    from rasa.core.interpreter import NaturalLanguageInterpreter
    from rasa.core.agent import Agent

    _endpoints = core_utils.AvailableEndpoints.read_endpoints(endpoints)

    if kwargs is None:
        kwargs = {}

    if output:
        nlu_utils.create_dir(output)

    if os.path.isfile(model):
        model_path = get_model(model)

    if model_path:
        # Single model: Normal evaluation
        loop = asyncio.get_event_loop()
        model_path = get_model(model)
        core_path, nlu_path = get_model_subdirectories(model_path)

        if os.path.exists(core_path) and os.path.exists(nlu_path):
            _interpreter = NaturalLanguageInterpreter.create(nlu_path, _endpoints.nlu)

            _agent = Agent.load(core_path, interpreter=_interpreter)

            kwargs = minimal_kwargs(kwargs, rasa.core.test, ["stories", "agent"])

            loop.run_until_complete(
                rasa.core.test(stories, _agent, out_directory=output, **kwargs)
            )
        else:
            logger.warning(
                "Not able to test. Make sure both models, core and "
                "nlu, are available."
            )

    else:
        from rasa.core.test import compare, plot_curve

        compare(model, stories, output)

        story_n_path = os.path.join(model, "num_stories.json")

        number_of_stories = core_utils.read_json_file(story_n_path)
        plot_curve(output, number_of_stories)
Пример #7
0
def run(model: Text,
        endpoints: Text,
        connector: Text = None,
        credentials: Text = None,
        **kwargs: Dict):
    """Runs a Rasa model.

    Args:
        model: Path to model archive.
        endpoints: Path to endpoints file.
        connector: Connector which should be use (overwrites `credentials`
        field).
        credentials: Path to channel credentials file.
        **kwargs: Additional arguments which are passed to
        `rasa.core.run.serve_application`.

    """
    import rasa.core.run
    import rasa.nlu.run
    from rasa.core.utils import AvailableEndpoints

    model_path = get_model(model)
    if not model_path:
        logger.error("No model found. Train a model before running the "
                     "server using `rasa train`.")
        return

    core_path, nlu_path = get_model_subdirectories(model_path)
    _endpoints = AvailableEndpoints.read_endpoints(endpoints)

    if not connector and not credentials:
        channel = "cmdline"
        logger.info("No chat connector configured, falling back to the "
                    "command line. Use `rasa configure channel` to connect"
                    "the bot to e.g. facebook messenger.")
    else:
        channel = connector

    if os.path.exists(core_path):
        kwargs = minimal_kwargs(kwargs, rasa.core.run.serve_application)
        rasa.core.run.serve_application(core_path,
                                        nlu_path,
                                        channel=channel,
                                        credentials_file=credentials,
                                        endpoints=_endpoints,
                                        **kwargs)

    # TODO: No core model was found, run only nlu server for now
    elif os.path.exists(nlu_path):
        rasa.nlu.run.run_cmdline(nlu_path)

    shutil.rmtree(model_path)
Пример #8
0
def run(
    model: Text,
    endpoints: Text,
    connector: Text = None,
    credentials: Text = None,
    **kwargs: Dict
):
    """Runs a Rasa model.

    Args:
        model: Path to model archive.
        endpoints: Path to endpoints file.
        connector: Connector which should be use (overwrites `credentials`
        field).
        credentials: Path to channel credentials file.
        **kwargs: Additional arguments which are passed to
        `rasa.core.run.serve_application`.

    """
    import rasa.core.run
    import rasa.nlu.run
    from rasa.core.utils import AvailableEndpoints

    model_path = get_model(model)
    if not model_path:
        print_error(
            "No model found. Train a model before running the "
            "server using `rasa train`."
        )
        return

    _endpoints = AvailableEndpoints.read_endpoints(endpoints)

    if not connector and not credentials:
        connector = "rest"
        print_warning(
            "No chat connector configured, falling back to the "
            "REST input channel. To connect your bot to another channel, "
            "read the docs here: {}/user-guide/"
            "messaging-and-voice-channels".format(DOCS_BASE_URL)
        )

    kwargs = minimal_kwargs(kwargs, rasa.core.run.serve_application)
    rasa.core.run.serve_application(
        model,
        channel=connector,
        credentials=credentials,
        endpoints=_endpoints,
        **kwargs
    )

    shutil.rmtree(model_path)
Пример #9
0
def test_core(model: Text,
              stories: Text,
              endpoints: Text = None,
              output: Text = DEFAULT_RESULTS_PATH,
              model_path: Text = None,
              **kwargs: Dict):
    import rasa.core.test
    import rasa.core.utils as core_utils
    from rasa_nlu import utils as nlu_utils
    from rasa.model import get_model
    from rasa.core.interpreter import NaturalLanguageInterpreter
    from rasa.core.agent import Agent

    _endpoints = core_utils.AvailableEndpoints.read_endpoints(endpoints)

    if output:
        nlu_utils.create_dir(output)

    if os.path.isfile(model):
        model_path = get_model(model)

    if model_path:
        # Single model: Normal evaluation
        loop = asyncio.get_event_loop()
        model_path = get_model(model)
        core_path, nlu_path = get_model_subdirectories(model_path)

        _interpreter = NaturalLanguageInterpreter.create(
            nlu_path, _endpoints.nlu)

        _agent = Agent.load(core_path, interpreter=_interpreter)

        kwargs = minimal_kwargs(kwargs, rasa.core.test)
        loop.run_until_complete(
            rasa.core.test(stories, _agent, out_directory=output, **kwargs))

    else:
        from rasa.core.test import compare, plot_curve

        compare(model, stories, output)

        story_n_path = os.path.join(model, 'num_stories.json')

        number_of_stories = core_utils.read_json_file(story_n_path)
        plot_curve(output, number_of_stories)
Пример #10
0
def test_nlu(model: Optional[Text], nlu_data: Optional[Text], kwargs: Optional[Dict]):
    from rasa.nlu.test import run_evaluation

    unpacked_model = get_model(model)

    if unpacked_model is None:
        print_error(
            "Could not find any model. Use 'rasa train nlu' to train an NLU model."
        )
        return

    nlu_model = os.path.join(unpacked_model, "nlu")

    if os.path.exists(nlu_model):
        kwargs = minimal_kwargs(kwargs, run_evaluation, ["data_path", "model"])
        run_evaluation(nlu_data, nlu_model, **kwargs)
    else:
        print_error(
            "Could not find any model. Use 'rasa train nlu' to train an NLU model."
        )
Пример #11
0
def test_core(
    model: Optional[Text] = None,
    stories: Optional[Text] = None,
    endpoints: Optional[Text] = None,
    output: Text = DEFAULT_RESULTS_PATH,
    kwargs: Optional[Dict] = None,
):
    import rasa.core.test
    import rasa.core.utils as core_utils
    from rasa.nlu import utils as nlu_utils
    from rasa.model import get_model
    from rasa.core.interpreter import NaturalLanguageInterpreter
    from rasa.core.agent import Agent

    _endpoints = core_utils.AvailableEndpoints.read_endpoints(endpoints)

    if kwargs is None:
        kwargs = {}

    if output:
        nlu_utils.create_dir(output)

    loop = asyncio.get_event_loop()
    model_path = get_model(model)
    core_path, nlu_path = get_model_subdirectories(model_path)

    if os.path.exists(core_path) and os.path.exists(nlu_path):
        _interpreter = NaturalLanguageInterpreter.create(
            nlu_path, _endpoints.nlu)

        _agent = Agent.load(model_path, interpreter=_interpreter)

        kwargs = minimal_kwargs(kwargs, rasa.core.test, ["stories", "agent"])

        loop.run_until_complete(
            rasa.core.test(stories, _agent, out_directory=output, **kwargs))
    else:
        print_error(
            "Not able to test. Make sure both models - core and nlu - are available."
        )