def run_online(interpreter,domain_file="./domain.yml",training_data_file='./backend/stories.md'): agent = Agent(domain_file, policies=[MemoizationPolicy(max_history=2), KerasPolicy()], interpreter=interpreter) data = agent.load_data(training_data_file) agent.train(data, batch_size=50, epochs=200, max_training_samples=300) online.serve_agent(agent) return agent
def run_weather_online(interpreter, domain_file="weather_domain.yml", training_data_file='data/stories.md'): action_endpoint = EndpointConfig(url="http://localhost:5055/webhook") agent = Agent(domain_file, policies=[MemoizationPolicy(max_history=2), KerasPolicy()], interpreter=interpreter, action_endpoint=action_endpoint) data = agent.load_data(training_data_file) agent.train(data, batch_size=50, epochs=200, max_training_samples=300) online.serve_agent(agent) return agent
def run_online(domain_file="domain.yml", training_data_file="data/stories.md"): interpreter = RasaNLUInterpreter('models/nlu/default/latest_nlu') action_endpoint = EndpointConfig(url="http://localhost:5055/webhook") agent = Agent( domain_file, policies=[MemoizationPolicy(max_history=2), KerasPolicy(), fallback], interpreter=interpreter, action_endpoint=action_endpoint) data = agent.load_data(training_data_file) agent.train(data, batch_size=50, epochs=200, max_training_samples=300) online.serve_agent(agent) return agent