Пример #1
0
def weight_list_serial_workflow(vis_list,
                                model_imagelist,
                                gcfcf=None,
                                weighting='uniform',
                                **kwargs):
    """ Weight the visibility data

    This is done collectively so the weights are summed over all vis_lists and then
    corrected

    :param vis_list:
    :param model_imagelist: Model required to determine weighting parameters
    :param weighting: Type of weighting
    :param kwargs: Parameters for functions in graphs
    :return: List of vis_graphs
   """
    centre = len(model_imagelist) // 2

    if gcfcf is None:
        gcfcf = [create_pswf_convolutionfunction(model_imagelist[centre])]

    def grid_wt(vis, model, g):
        if vis is not None:
            if model is not None:
                griddata = create_griddata_from_image(model)
                griddata = grid_weight_to_griddata(vis, griddata, g[0][1])
                return griddata
            else:
                return None
        else:
            return None

    weight_list = [
        grid_wt(vis_list[i], model_imagelist[i], gcfcf)
        for i in range(len(vis_list))
    ]

    merged_weight_grid = griddata_merge_weights(weight_list)

    def re_weight(vis, model, gd, g):
        if gd is not None:
            if vis is not None:
                # Ensure that the griddata has the right axes so that the convolution
                # function mapping works
                agd = create_griddata_from_image(model)
                agd.data = gd[0].data
                vis = griddata_reweight(vis, agd, g[0][1])
                return vis
            else:
                return None
        else:
            return vis

    return [
        re_weight(v, model_imagelist[i], merged_weight_grid, gcfcf)
        for i, v in enumerate(vis_list)
    ]
Пример #2
0
def ical_list_serial_workflow(vis_list,
                              model_imagelist,
                              context,
                              vis_slices=1,
                              facets=1,
                              gcfcf=None,
                              calibration_context='TG',
                              do_selfcal=True,
                              **kwargs):
    """Run ICAL pipeline

    :param vis_list:
    :param model_imagelist:
    :param context: imaging context e.g. '2d'
    :param calibration_context: Sequence of calibration steps e.g. TGB
    :param do_selfcal: Do the selfcalibration?
    :param kwargs: Parameters for functions in components
    :return:
    """
    gt_list = list()

    if gcfcf is None:
        gcfcf = [create_pswf_convolutionfunction(model_imagelist[0])]

    psf_imagelist = invert_list_serial_workflow(vis_list,
                                                model_imagelist,
                                                dopsf=True,
                                                context=context,
                                                vis_slices=vis_slices,
                                                facets=facets,
                                                gcfcf=gcfcf,
                                                **kwargs)

    model_vislist = [copy_visibility(v, zero=True) for v in vis_list]

    if do_selfcal:
        cal_vis_list = [copy_visibility(v) for v in vis_list]
    else:
        cal_vis_list = vis_list

    if do_selfcal:
        # Make the predicted visibilities, selfcalibrate against it correcting the gains, then
        # form the residual visibility, then make the residual image
        model_vislist = predict_list_serial_workflow(model_vislist,
                                                     model_imagelist,
                                                     context=context,
                                                     vis_slices=vis_slices,
                                                     facets=facets,
                                                     gcfcf=gcfcf,
                                                     **kwargs)
        cal_vis_list, gt_list = calibrate_list_serial_workflow(
            cal_vis_list,
            model_vislist,
            calibration_context=calibration_context,
            **kwargs)
        residual_vislist = subtract_list_serial_workflow(
            cal_vis_list, model_vislist)
        residual_imagelist = invert_list_serial_workflow(residual_vislist,
                                                         model_imagelist,
                                                         context=context,
                                                         dopsf=False,
                                                         vis_slices=vis_slices,
                                                         facets=facets,
                                                         gcfcf=gcfcf,
                                                         iteration=0,
                                                         **kwargs)
    else:
        # If we are not selfcalibrating it's much easier and we can avoid an unnecessary round of gather/scatter
        # for visibility partitioning such as timeslices and wstack.
        residual_imagelist = residual_list_serial_workflow(
            cal_vis_list,
            model_imagelist,
            context=context,
            vis_slices=vis_slices,
            facets=facets,
            gcfcf=gcfcf,
            **kwargs)

    deconvolve_model_imagelist = deconvolve_list_serial_workflow(
        residual_imagelist,
        psf_imagelist,
        model_imagelist,
        prefix='cycle 0',
        **kwargs)
    nmajor = get_parameter(kwargs, "nmajor", 5)
    if nmajor > 1:
        for cycle in range(nmajor):
            if do_selfcal:
                model_vislist = predict_list_serial_workflow(
                    model_vislist,
                    deconvolve_model_imagelist,
                    context=context,
                    vis_slices=vis_slices,
                    facets=facets,
                    gcfcf=gcfcf,
                    **kwargs)
                cal_vis_list = [copy_visibility(v) for v in vis_list]
                cal_vis_list, gt_list = calibrate_list_serial_workflow(
                    cal_vis_list,
                    model_vislist,
                    calibration_context=calibration_context,
                    iteration=cycle,
                    **kwargs)
                residual_vislist = subtract_list_serial_workflow(
                    cal_vis_list, model_vislist)
                residual_imagelist = invert_list_serial_workflow(
                    residual_vislist,
                    model_imagelist,
                    context=context,
                    vis_slices=vis_slices,
                    facets=facets,
                    gcfcf=gcfcf,
                    **kwargs)
            else:
                residual_imagelist = residual_list_serial_workflow(
                    cal_vis_list,
                    deconvolve_model_imagelist,
                    context=context,
                    vis_slices=vis_slices,
                    facets=facets,
                    gcfcf=gcfcf,
                    **kwargs)

            prefix = "cycle %d" % (cycle + 1)
            deconvolve_model_imagelist = deconvolve_list_serial_workflow(
                residual_imagelist,
                psf_imagelist,
                deconvolve_model_imagelist,
                prefix=prefix,
                **kwargs)
    residual_imagelist = residual_list_serial_workflow(
        cal_vis_list,
        deconvolve_model_imagelist,
        context=context,
        vis_slices=vis_slices,
        facets=facets,
        gcfcf=gcfcf,
        **kwargs)
    restore_imagelist = restore_list_serial_workflow(
        deconvolve_model_imagelist, psf_imagelist, residual_imagelist)
    return deconvolve_model_imagelist, residual_imagelist, restore_imagelist, gt_list
Пример #3
0
def continuum_imaging_list_serial_workflow(vis_list,
                                           model_imagelist,
                                           context,
                                           gcfcf=None,
                                           vis_slices=1,
                                           facets=1,
                                           **kwargs):
    """ Create graph for the continuum imaging pipeline.

    Same as ICAL but with no selfcal.

    :param vis_list:
    :param model_imagelist:
    :param context: Imaging context
    :param kwargs: Parameters for functions in components
    :return:
    """
    if gcfcf is None:
        gcfcf = [create_pswf_convolutionfunction(model_imagelist[0])]

    psf_imagelist = invert_list_serial_workflow(vis_list,
                                                model_imagelist,
                                                context=context,
                                                dopsf=True,
                                                vis_slices=vis_slices,
                                                facets=facets,
                                                gcfcf=gcfcf,
                                                **kwargs)

    residual_imagelist = residual_list_serial_workflow(vis_list,
                                                       model_imagelist,
                                                       context=context,
                                                       gcfcf=gcfcf,
                                                       vis_slices=vis_slices,
                                                       facets=facets,
                                                       **kwargs)

    deconvolve_model_imagelist = deconvolve_list_serial_workflow(
        residual_imagelist,
        psf_imagelist,
        model_imagelist,
        prefix='cycle 0',
        **kwargs)

    nmajor = get_parameter(kwargs, "nmajor", 5)
    if nmajor > 1:
        for cycle in range(nmajor):
            prefix = "cycle %d" % (cycle + 1)
            residual_imagelist = residual_list_serial_workflow(
                vis_list,
                deconvolve_model_imagelist,
                context=context,
                vis_slices=vis_slices,
                facets=facets,
                gcfcf=gcfcf,
                **kwargs)
            deconvolve_model_imagelist = deconvolve_list_serial_workflow(
                residual_imagelist,
                psf_imagelist,
                deconvolve_model_imagelist,
                prefix=prefix,
                **kwargs)

    residual_imagelist = residual_list_serial_workflow(
        vis_list,
        deconvolve_model_imagelist,
        context=context,
        vis_slices=vis_slices,
        facets=facets,
        gcfcf=gcfcf,
        **kwargs)
    restore_imagelist = restore_list_serial_workflow(
        deconvolve_model_imagelist, psf_imagelist, residual_imagelist)
    return (deconvolve_model_imagelist, residual_imagelist, restore_imagelist)
Пример #4
0
def predict_list_serial_workflow(vis_list,
                                 model_imagelist,
                                 context,
                                 vis_slices=1,
                                 facets=1,
                                 gcfcf=None,
                                 **kwargs):
    """Predict, iterating over both the scattered vis_list and image

    The visibility and image are scattered, the visibility is predicted on each part, and then the
    parts are assembled.

    :param vis_list: list of vis
    :param model_imagelist: Model used to determine image parameters
    :param vis_slices: Number of vis slices (w stack or timeslice)
    :param facets: Number of facets (per axis)
    :param context: Type of processing e.g. 2d, wstack, timeslice or facets
    :param gcfcg: tuple containing grid correction and convolution function
    :param kwargs: Parameters for functions in components
    :return: List of vis_lists
   """

    assert len(vis_list) == len(
        model_imagelist), "Model must be the same length as the vis_list"

    # Predict_2d does not clear the vis so we have to do it here.
    vis_list = zero_list_serial_workflow(vis_list)

    c = imaging_context(context)
    vis_iter = c['vis_iterator']
    predict = c['predict']

    if facets % 2 == 0 or facets == 1:
        actual_number_facets = facets
    else:
        actual_number_facets = facets - 1

    def predict_ignore_none(vis, model, g):
        if vis is not None:
            assert isinstance(vis, Visibility) or isinstance(
                vis, BlockVisibility), vis
            assert isinstance(model, Image), model
            return predict(vis, model, context=context, gcfcf=g, **kwargs)
        else:
            return None

    if gcfcf is None:
        gcfcf = [create_pswf_convolutionfunction(m) for m in model_imagelist]

    # Loop over all frequency windows
    if facets == 1:
        image_results_list = list()
        for ivis, sub_vis_list in enumerate(vis_list):
            if len(gcfcf) > 1:
                g = gcfcf[ivis]
            else:
                g = gcfcf[0]
            # Loop over sub visibility
            vis_predicted = copy_visibility(sub_vis_list, zero=True)
            for rows in vis_iter(sub_vis_list, vis_slices):
                row_vis = create_visibility_from_rows(sub_vis_list, rows)
                row_vis_predicted = predict_ignore_none(
                    row_vis, model_imagelist[ivis], g)
                if row_vis_predicted is not None:
                    vis_predicted.data['vis'][
                        rows, ...] = row_vis_predicted.data['vis']
            image_results_list.append(vis_predicted)

        return image_results_list
    else:
        image_results_list = list()
        for ivis, sub_vis_list in enumerate(vis_list):
            # Create the graph to divide an image into facets. This is by reference.
            facet_lists = image_scatter_facets(model_imagelist[ivis],
                                               facets=facets)
            facet_vis_lists = list()
            sub_vis_lists = visibility_scatter(sub_vis_list, vis_iter,
                                               vis_slices)

            # Loop over sub visibility
            for sub_sub_vis_list in sub_vis_lists:
                facet_vis_results = list()
                # Loop over facets
                for facet_list in facet_lists:
                    # Predict visibility for this subvisibility from this facet
                    facet_vis_list = predict_ignore_none(
                        sub_sub_vis_list, facet_list, None)
                    facet_vis_results.append(facet_vis_list)
                # Sum the current sub-visibility over all facets
                facet_vis_lists.append(sum_predict_results(facet_vis_results))
            # Sum all sub-visibilties
            image_results_list.append(
                visibility_gather(facet_vis_lists, sub_vis_list, vis_iter))
        return image_results_list
Пример #5
0
def invert_list_serial_workflow(vis_list,
                                template_model_imagelist,
                                dopsf=False,
                                normalize=True,
                                facets=1,
                                vis_slices=1,
                                context='2d',
                                gcfcf=None,
                                **kwargs):
    """ Sum results from invert, iterating over the scattered image and vis_list

    :param vis_list: list of vis
    :param template_model_imagelist: list of template models
    :param dopsf: Make the PSF instead of the dirty image
    :param facets: Number of facets
    :param normalize: Normalize by sumwt
    :param vis_slices: Number of slices
    :param context: Imaging context
    :param gcfcg: tuple containing grid correction and convolution function
    :param kwargs: Parameters for functions in components
    :return: List of (image, sumwt) tuples, one per vis in vis_list

    For example::

        model_list = [create_image_from_visibility
            (v, npixel=npixel, cellsize=cellsize, polarisation_frame=pol_frame)
            for v in vis_list]

        dirty_list = invert_list_serial_workflow(vis_list, template_model_imagelist=model_list, context='wstack',
                                                    vis_slices=51)
        dirty, sumwt = dirty_list[centre]

   """

    if not isinstance(template_model_imagelist, collections.abc.Iterable):
        template_model_imagelist = [template_model_imagelist]

    c = imaging_context(context)
    vis_iter = c['vis_iterator']
    invert = c['invert']

    if facets % 2 == 0 or facets == 1:
        actual_number_facets = facets
    else:
        actual_number_facets = max(1, (facets - 1))

    def gather_image_iteration_results(results, template_model):
        result = create_empty_image_like(template_model)
        i = 0
        sumwt = numpy.zeros([template_model.nchan, template_model.npol])
        for dpatch in image_scatter_facets(result, facets=facets):
            assert i < len(
                results), "Too few results in gather_image_iteration_results"
            if results[i] is not None:
                assert len(results[i]) == 2, results[i]
                dpatch.data[...] = results[i][0].data[...]
                sumwt += results[i][1]
                i += 1
        return result, sumwt

    def invert_ignore_none(vis, model, gg):
        if vis is not None:

            return invert(vis,
                          model,
                          context=context,
                          dopsf=dopsf,
                          normalize=normalize,
                          gcfcf=gg,
                          **kwargs)
        else:
            return create_empty_image_like(model), numpy.zeros(
                [model.nchan, model.npol])

    # If we are doing facets, we need to create the gcf for each image
    if gcfcf is None and facets == 1:
        gcfcf = [create_pswf_convolutionfunction(template_model_imagelist[0])]

    # Loop over all vis_lists independently
    results_vislist = list()
    if facets == 1:
        for ivis, sub_vis_list in enumerate(vis_list):
            if len(gcfcf) > 1:
                g = gcfcf[ivis]
            else:
                g = gcfcf[0]
            # Iterate within each vis_list
            result_image = create_empty_image_like(
                template_model_imagelist[ivis])
            result_sumwt = numpy.zeros([
                template_model_imagelist[ivis].nchan,
                template_model_imagelist[ivis].npol
            ])
            for rows in vis_iter(sub_vis_list, vis_slices):
                row_vis = create_visibility_from_rows(sub_vis_list, rows)
                result = invert_ignore_none(row_vis,
                                            template_model_imagelist[ivis], g)
                if result is not None:
                    result_image.data += result[1][:, :, numpy.newaxis, numpy.
                                                   newaxis] * result[0].data
                    result_sumwt += result[1]
            result_image = normalize_sumwt(result_image, result_sumwt)
            results_vislist.append((result_image, result_sumwt))
    else:
        for ivis, sub_vis_list in enumerate(vis_list):
            # Create the graph to divide an image into facets. This is by reference.
            facet_lists = image_scatter_facets(template_model_imagelist[ivis],
                                               facets=facets)
            # Create the graph to divide the visibility into slices. This is by copy.
            sub_sub_vis_lists = visibility_scatter(sub_vis_list,
                                                   vis_iter,
                                                   vis_slices=vis_slices)

            # Iterate within each vis_list
            vis_results = list()
            for sub_sub_vis_list in sub_sub_vis_lists:
                facet_vis_results = list()
                for facet_list in facet_lists:
                    facet_vis_results.append(
                        invert_ignore_none(sub_sub_vis_list, facet_list, None))
                vis_results.append(
                    gather_image_iteration_results(
                        facet_vis_results, template_model_imagelist[ivis]))
            results_vislist.append(sum_invert_results(vis_results))

    return results_vislist