Пример #1
0
def Katsura(R, n=None, homog=False, singular=singular_default):
    """
    ``n``-th katsura ideal of ``R`` if ``R`` is coercible to
    :class:`Singular <sage.interfaces.singular.Singular>`.

    INPUT:

    - ``R`` -- base ring to construct ideal for

    - ``n`` -- (default: ``None``) which katsura ideal of ``R``. If ``None``,
      then ``n`` is set to ``R.ngens()``.

    -  ``homog`` -- if ``True`` a homogeneous ideal is returned
       using the last variable in the ideal (default: ``False``)

    -  ``singular`` -- singular instance to use


    EXAMPLES::

        sage: P.<x,y,z> = PolynomialRing(QQ,3)
        sage: I = sage.rings.ideal.Katsura(P,3); I
        Ideal (x + 2*y + 2*z - 1, x^2 + 2*y^2 + 2*z^2 - x, 2*x*y + 2*y*z - y)
        of Multivariate Polynomial Ring in x, y, z over Rational Field

    ::

        sage: Q.<x> = PolynomialRing(QQ,1)
        sage: J = sage.rings.ideal.Katsura(Q,1); J
        Ideal (x - 1) of Multivariate Polynomial Ring in x over Rational Field
    """
    from rational_field import RationalField
    if n:
        if n > R.ngens():
            raise ArithmeticError("n must be <= R.ngens().")
    else:
        n = R.ngens()
    singular.lib("poly")
    R2 = R.change_ring(RationalField())
    R2._singular_().set_ring()

    if not homog:
        I = singular.katsura(n)
    else:
        I = singular.katsura(n).homog(R2.gen(n - 1))
    return R2.ideal(I).change_ring(R)
Пример #2
0
def Cyclic(R, n=None, homog=False, singular=singular_default):
    """
    Ideal of cyclic ``n``-roots from 1-st ``n`` variables of ``R`` if ``R`` is
    coercible to :class:`Singular <sage.interfaces.singular.Singular>`.

    INPUT:

    -  ``R`` -- base ring to construct ideal for

    -  ``n`` -- number of cyclic roots (default: ``None``). If ``None``, then
       ``n`` is set to ``R.ngens()``.

    -  ``homog`` -- (default: ``False``) if ``True`` a homogeneous ideal is
       returned using the last variable in the ideal

    -  ``singular`` -- singular instance to use

    .. NOTE::

       ``R`` will be set as the active ring in
       :class:`Singular <sage.interfaces.singular.Singular>`

    EXAMPLES:

    An example from a multivariate polynomial ring over the
    rationals::

        sage: P.<x,y,z> = PolynomialRing(QQ,3,order='lex')
        sage: I = sage.rings.ideal.Cyclic(P)
        sage: I
        Ideal (x + y + z, x*y + x*z + y*z, x*y*z - 1) of Multivariate Polynomial
        Ring in x, y, z over Rational Field
        sage: I.groebner_basis()
        [x + y + z, y^2 + y*z + z^2, z^3 - 1]

    We compute a Groebner basis for cyclic 6, which is a standard
    benchmark and test ideal::

        sage: R.<x,y,z,t,u,v> = QQ['x,y,z,t,u,v']
        sage: I = sage.rings.ideal.Cyclic(R,6)
        sage: B = I.groebner_basis()
        sage: len(B)
        45
    """
    from rational_field import RationalField

    if n:
        if n > R.ngens():
            raise ArithmeticError("n must be <= R.ngens()")
    else:
        n = R.ngens()

    singular.lib("poly")
    R2 = R.change_ring(RationalField())
    R2._singular_().set_ring()

    if not homog:
        I = singular.cyclic(n)
    else:
        I = singular.cyclic(n).homog(R2.gen(n - 1))
    return R2.ideal(I).change_ring(R)