def root_mean_squared_error(y_true, y_pred): """ Root Mean Squared Error """ if not isinstance(y_true, R.Tensor): y_true = R.Tensor(y_true) if not isinstance(y_pred, R.Tensor): y_pred = R.Tensor(y_pred) return R.pow(mean_squared_error(y_true, y_pred), R.Scalar(0.5))
def mean_squared_log_error(y_true, y_pred): """ Mean Squared Log Error """ if not isinstance(y_true, R.Tensor): y_true = R.Tensor(y_true) if not isinstance(y_pred, R.Tensor): y_pred = R.Tensor(y_pred) return R.mean(R.pow(R.sub(R.natlog(R.add(y_true, R.one())), R.natlog(R.add(y_pred, R.one()))), R.Scalar(2)))
def mean_squared_error(y_true, y_pred): """ Mean Squared Error """ if not isinstance(y_true, R.Tensor): y_true = R.Tensor(y_true) if not isinstance(y_pred, R.Tensor): y_pred = R.Tensor(y_pred) return R.mean(R.pow(R.sub(y_true, y_pred), R.Scalar(2)))