Пример #1
0
def categorical_hinge(y_true, y_pred):
    if not isinstance(y_true, R.Tensor):
        y_true = R.Tensor(y_true)
    if not isinstance(y_pred, R.Tensor):
        y_pred = R.Tensor(y_pred)

    neg = R.max(R.elemul(R.sub(R.Scalar(-1), y_true), y_pred))
    pos = R.sum(R.elemul(y_true, y_pred))
    loss = R.max((R.sub(neg, pos), R.Scalar(1)), R.Scalar(0))

    return loss
Пример #2
0
def log_loss(y_true, y_pred, with_logit=True):
    if with_logit:
        y_pred = sigmoid(y_pred)

    else:
        pass

    y_pred = R.clip(y_pred, R.epsilon(), R.sub(R.Scalar(1), R.epsilon()))
    loss = R.elemul(R.Scalar(-1), R.mean(R.elemul(y_true, R.natlog(y_pred)),
                                         R.elemul((R.sub(R.Scalar(1), y_true)), R.natlog(R.sub(R.Scalar(1), y_pred)))))

    return loss
def r2_score(y_true, y_pred):

  if not isinstance(y_true, R.Tensor):
      y_true = R.Tensor(y_true)
  if not isinstance(y_pred, R.Tensor):
      y_pred = R.Tensor(y_pred)    
  
  scalar1 = R.Scalar(1)    
        
  SS_res = R.sum(R.square(R.sub(y_true, y_pred)))
  SS_tot = R.sum(R.square(R.sub(y_true, R.mean(y_true))))  

  return R.sub(scalar1, R.div(SS_res, R.add(SS_tot, R.epsilon())))
Пример #4
0
def normalize(x):
    """
    Normalize an array
    """
    if not isinstance(x, R.Tensor):
        x = R.Tensor(x)

    if len(x.output.shape) > 1:
        raise Exception("Unsupported input type")

    max = R.max(x)
    min = R.min(x)

    return R.div(R.sub(x, min), R.sub(max, min))
Пример #5
0
def huber(y_true, y_pred, d):
    if not isinstance(y_true, R.Tensor):
        y_true = R.Tensor(y_true)
    if not isinstance(y_pred, R.Tensor):
        y_pred = R.Tensor(y_pred)

    d = R.Scalar(d)
    x = R.sub(y_true, y_pred)

    if R.abs(x) <= d:
        return R.elemul(R.Scalar(d), R.elemul(x, x))

    if R.abs(x) > d:
        return R.add(R.elemul(R.Scalar(d), R.mul(d, d)), R.elemul(d, R.sub(R.abs(x), d)))
Пример #6
0
def Poisson_loss(y_true, y_pred):
    if not isinstance(y_true, R.Tensor):
        y_true = R.Tensor(y_true)
    if not isinstance(y_pred, R.Tensor):
        y_pred = R.Tensor(y_pred)

    y_pred = R.clip(y_pred, R.epsilon(), R.Saclar(1) - R.epsilon())

    return R.sub(y_pred, R.elemul(y_true, R.natlog(y_pred)))
Пример #7
0
def mean_squared_log_error(y_true, y_pred):
    """
    Mean Squared Log Error
    """
    if not isinstance(y_true, R.Tensor):
        y_true = R.Tensor(y_true)
    if not isinstance(y_pred, R.Tensor):
        y_pred = R.Tensor(y_pred)

    return R.mean(R.pow(R.sub(R.natlog(R.add(y_true, R.one())), R.natlog(R.add(y_pred, R.one()))), R.Scalar(2)))
Пример #8
0
def mean_absolute_error(y_true, y_pred):
    """
    Mean Absolute Error
    """
    if not isinstance(y_true, R.Tensor):
        y_true = R.Tensor(y_true)
    if not isinstance(y_pred, R.Tensor):
        y_pred = R.Tensor(y_pred)

    return R.mean(R.abs(R.sub(y_pred, y_true)))
Пример #9
0
def r2_score(y_true, y_pred):
    if isinstance(y_true, R.Tensor) or isinstance(y_true, R.Op):
        pass
    else:
        y_true = R.Tensor(y_true, name="y_true")

    if isinstance(y_pred, R.Tensor) or isinstance(y_pred, R.Op):
        pass
    else:
        y_pred = R.Tensor(y_pred, name="y_pred")

    print(type(y_true), type(y_pred))

    scalar1 = R.Scalar(1)

    SS_res = R.sum(R.square(R.sub(y_pred, y_true)), name="ss_res")
    SS_tot = R.sum(R.square(R.sub(y_true, R.mean(y_true))), name="ss_tot")

    return R.sub(scalar1, R.div(SS_res, SS_tot), name="r2_score")
Пример #10
0
def mean_squared_error(y_true, y_pred):
    """
    Mean Squared Error
    """
    if not isinstance(y_true, R.Tensor):
        y_true = R.Tensor(y_true)
    if not isinstance(y_pred, R.Tensor):
        y_pred = R.Tensor(y_pred)

    return R.mean(R.pow(R.sub(y_true, y_pred), R.Scalar(2)))
Пример #11
0
def standardize(x):
    """
    Standardize an array
    """
    if not isinstance(x, R.Tensor):
        x = R.Tensor(x)

    mean = R.mean(x)
    std = R.std(x)

    return R.div(R.sub(x, mean), std)
Пример #12
0
def pearson_correlation(x, y):
    """
    Calculate linear correlation(pearson correlation)
    """

    if not isinstance(x, R.Tensor):
        x = R.Tensor(x)
    if not isinstance(y, R.Tensor):
        y = R.Tensor(y)

    a = R.sum(R.square(x))
    b = R.sum(R.square(y))

    n = a.output.shape[0]

    return R.div(
        R.sub(R.multiply(R.Scalar(n), R.sum(R.multiply(x, y))),
              R.multiply(R.sum(x), R.sum(y))),
        R.multiply(
            R.square_root(R.sub(R.multiply(R.Scalar(n), a), R.square(b))),
            R.square_root(R.sub(R.multiply(R.Scalar(n), b), R.square(b)))))
Пример #13
0
def z_score(x, axis=None):
    if not isinstance(x, R.Tensor):
        x = R.Tensor(x)

    if axis is not None:
        mean = R.mean(x, axis=axis)
        std = R.std(x, axis=axis)
    else:
        mean = R.mean(x)
        std = R.std(x)

    return R.div(R.sub(x, mean), std)
Пример #14
0
    def find_split(self, X, y):
        ideal_col = None
        ideal_threshold = None

        num_observations = y.shape_().gather(R.Scalar(0))
        while num_observations.status != 'computed':
            pass
        num_observations = int(num_observations.output)
        if num_observations <= 1:
            return ideal_col, ideal_threshold

        y = y.reshape(shape=[num_observations])
        count_in_parent = R.Tensor([])
        for c in range(self.num_classes):
            count_in_parent = count_in_parent.concat(
                R.sum(R.equal(y, R.Scalar(c))).expand_dims())
        gini = R.square(
            count_in_parent.foreach(operation='div', params=num_observations))
        best_gini = R.sub(R.Scalar(1.0), R.sum(gini))
        temp_y = y.reshape(shape=[num_observations, 1])

        for col in range(self.num_features):
            temp_X = R.gather(
                R.transpose(X),
                R.Scalar(col)).reshape(shape=[num_observations, 1])
            all_data = R.concat(temp_X, temp_y, axis=1)

            column = R.gather(R.transpose(X), R.Scalar(col))
            ind = column.find_indices(R.sort(R.unique(column)))
            while ind.status != "computed":
                pass
            inform_server()
            sorted_data = R.Tensor([])
            for i in ind.output:
                sorted_data = sorted_data.concat(all_data.gather(
                    R.Tensor(i)))  # need to find another way to sort
            sorted_data_tpose = sorted_data.transpose()
            thresholds = sorted_data_tpose.gather(R.Scalar(0)).gather(
                R.Scalar(0))
            obs_classes = sorted_data_tpose.gather(R.Scalar(1)).gather(
                R.Scalar(0))

            num_left = R.Tensor([0] * self.num_classes)  # need ops
            num_right = count_in_parent
            for i in range(1, num_observations):
                class_ = R.gather(obs_classes, R.Tensor([i - 1]))
                classencoding = R.one_hot_encoding(
                    class_, depth=self.num_classes).gather(R.Scalar(0))
                num_left = num_left.add(classencoding)
                num_right = num_right.sub(classencoding)

                gini_left = R.sub(
                    R.Scalar(1),
                    R.sum(
                        R.square(R.foreach(num_left, operation='div',
                                           params=i))))
                gini_right = R.sub(
                    R.Scalar(1),
                    R.sum(
                        R.square(
                            R.foreach(num_right,
                                      operation='div',
                                      params=num_observations - i))))
                gini = R.div(
                    R.add(
                        R.multiply(R.Scalar(i), gini_left),
                        R.multiply(R.Scalar(num_observations - i),
                                   gini_right)), R.Scalar(num_observations))

                decision1 = R.logical_and(thresholds.gather(R.Tensor([i])),
                                          thresholds.gather(R.Tensor([i - 1])))
                decision2 = gini.less(best_gini)
                while decision2.status != "computed":
                    pass

                print(decision2.output == 1)
                if decision2.output == 1 and decision1 != 1:
                    best_gini = gini
                    ideal_col = col
                    ideal_threshold = R.div(
                        R.add(thresholds.gather(R.Tensor([i])),
                              thresholds.gather(R.Tensor([i - 1]))),
                        R.Scalar(2))
        print(ideal_col, ideal_threshold)
        return ideal_col, ideal_threshold
 def __compute_cost(self, y, y_pred, no_samples, name="cost"):
     """Cost function"""
     return R.multiply(R.Scalar(1.0 / (2.0 * no_samples.output)),
                       R.sum(R.square(R.sub(y_pred, y))),
                       name=name)
def tanh(x):
    """
    Tanh Activation Function
    """
    return R.div(R.sub(R.exp(x), R.exp(R.mul(R.minus_one(), x))),
                 R.add(R.exp(x), R.exp(R.mul(R.minus_one(), x))))
Пример #17
0
 def __eucledian_distance(self, X):
     X = R.expand_dims(X, axis=1, name="expand_dims")
     return R.square_root(
         R.sub(X, self.X_train).pow(R.Scalar(2)).sum(axis=2))
Пример #18
0
 def closest_centroids(self, points, centroids):
     centroids = R.expand_dims(centroids, axis=1)
     return R.argmin(
         R.square_root(R.sum(R.square(R.sub(points, centroids)), axis=2)))
Пример #19
0
 def closest_centroids(self, centroids):
     centroids = R.expand_dims(centroids, axis=1)
     return R.argmin(
         square_root(
             R.sub(self.points, centroids).pow(Scalar(2)).sum(axis=2)))
Пример #20
0
import time

import ravop.core as R
from ravcom import inform_server

a = R.Tensor([1, 2, 3, 4, 5, 6, 7, 8, 9, 0])
b = R.Scalar(10)

c = R.add(a, b)
d = R.sub(a, b)
e = R.multiply(a, b)
f = R.mean(a)
g = R.median(a)

inform_server()

# Wait for 10 seconds
time.sleep(10)

print(c())
print(d())
print(e())
print(f())
print(g())
Пример #21
0
 def __euclidean_distance(self, X):
     X = R.expand_dims(X, axis=1, name="expand_dims")
     return R.square_root(R.sub(X, self._X).pow(Scalar(2)).sum(axis=2))
Пример #22
0
def eucledian_distance(self, X, Y):
    return R.square_root(((R.sub(X, Y)).pow(Scalar(2))).sum(axis=0))