def _register_all(): from ray.rllib.agents.trainer import Trainer, with_common_config from ray.rllib.agents.registry import ALGORITHMS, get_agent_class from ray.rllib.contrib.registry import CONTRIBUTED_ALGORITHMS for key in list(ALGORITHMS.keys()) + list(CONTRIBUTED_ALGORITHMS.keys( )) + ["__fake", "__sigmoid_fake_data", "__parameter_tuning"]: register_trainable(key, get_agent_class(key)) def _see_contrib(name): """Returns dummy agent class warning algo is in contrib/.""" class _SeeContrib(Trainer): _name = "SeeContrib" _default_config = with_common_config({}) def setup(self, config): raise NameError( "Please run `contrib/{}` instead.".format(name)) return _SeeContrib # also register the aliases minus contrib/ to give a good error message for key in list(CONTRIBUTED_ALGORITHMS.keys()): assert key.startswith("contrib/") alias = key.split("/", 1)[1] register_trainable(alias, _see_contrib(alias))
def _register_all(): from ray.rllib.agents.registry import ALGORITHMS from ray.rllib.contrib.registry import CONTRIBUTED_ALGORITHMS for key in list(ALGORITHMS.keys()) + list(CONTRIBUTED_ALGORITHMS.keys( )) + ["__fake", "__sigmoid_fake_data", "__parameter_tuning"]: from ray.rllib.agents.registry import get_agent_class register_trainable(key, get_agent_class(key))
type=str, default="simple", choices=scenarios.__all__, help="Scenario selection, default is `simple`") parser.add_argument("--n_epoch", type=int, default=100, help="Learning episodes.") parser.add_argument("--interval", type=int, default=20, help="Save interval, defaut is 20.") parser.add_argument("--run", type=str, default="PG", choices=set(ALGORITHMS.keys())) parser.add_argument("--share", action="store_true") parser.add_argument("--n_workers", type=int, default=2) parser.add_argument("--n_gpus", type=float, default=1.) parser.add_argument("--n_cpu_per_worker", type=float, default=0.) parser.add_argument("--s_batch_size", type=int, default=200) parser.add_argument("--t_batch_size", type=int, default=200) parser.add_argument("--config", type=str, default="simple_env_config.json", help="Environment configuration filename.") args = parser.parse_args() env_config = utils.load_env_config(CONFIG_BACKUP, args.config) env = engine.Environment(env_config,
def test_algo_import(self): for name, func in ALGORITHMS.items(): func()