Пример #1
0
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        TorchModelV2.__init__(self, obs_space, action_space, num_outputs,
                              model_config, name)
        nn.Module.__init__(self)

        filters = model_config.get("conv_filters")
        if not filters:
            filters = _get_filter_config(obs_space.shape)
        layers = []

        (w, h, in_channels) = obs_space.shape
        in_size = [w, h]
        for out_channels, kernel, stride in filters[:-1]:
            padding, out_size = valid_padding(in_size, kernel,
                                              [stride, stride])
            layers.append(
                SlimConv2d(in_channels, out_channels, kernel, stride, padding))
            in_channels = out_channels
            in_size = out_size

        out_channels, kernel, stride = filters[-1]
        layers.append(
            SlimConv2d(in_channels, out_channels, kernel, stride, None))
        self._convs = nn.Sequential(*layers)

        self._logits = SlimFC(out_channels,
                              num_outputs,
                              initializer=nn.init.xavier_uniform_)
        self._value_branch = SlimFC(out_channels,
                                    1,
                                    initializer=normc_initializer())
        self._cur_value = None
Пример #2
0
    def __init__(self, obs_space, action_space, num_outputs, model_config,
                 name):
        TorchModelV2.__init__(self, obs_space, action_space, num_outputs,
                              model_config, name)
        nn.Module.__init__(self)

        activation = get_activation_fn(
            model_config.get("conv_activation"), framework="torch")
        filters = model_config.get("conv_filters")
        if not filters:
            filters = _get_filter_config(obs_space.shape)
        # no_final_linear = model_config.get("no_final_linear")
        # vf_share_layers = model_config.get("vf_share_layers")

        layers = []
        (w, h, in_channels) = obs_space.shape
        in_size = [w, h]
        for out_channels, kernel, stride in filters[:-1]:
            padding, out_size = valid_padding(in_size, kernel,
                                              [stride, stride])
            layers.append(
                SlimConv2d(
                    in_channels,
                    out_channels,
                    kernel,
                    stride,
                    padding,
                    activation_fn=activation))
            in_channels = out_channels
            in_size = out_size

        out_channels, kernel, stride = filters[-1]
        layers.append(
            SlimConv2d(
                in_channels,
                out_channels,
                kernel,
                stride,
                None,
                activation_fn=activation))
        self._convs = nn.Sequential(*layers)

        self._logits = SlimFC(
            out_channels, num_outputs, initializer=nn.init.xavier_uniform_)
        self._value_branch = SlimFC(
            out_channels, 1, initializer=normc_initializer())
        # Holds the current "base" output (before logits layer).
        self._features = None