Пример #1
0
    def testExpandSearchSpace(self):
        exp = {"test-exp": {"run": "f1", "config": {"a": {"d": "dummy"}}}}
        space = SearchSpace([
            DiscreteSpace("a.b.c", [1, 2]),
            DiscreteSpace("a.d", ["a", "b"]),
        ])
        searcher = GridSearch(space, "reward")
        searcher.add_configurations(exp)
        trials = searcher.next_trials()

        self.assertEqual(len(trials), 4)
        self.assertTrue(trials[0].config["a"]["b"]["c"] in [1, 2])
        self.assertTrue(trials[1].config["a"]["d"] in ["a", "b"])
Пример #2
0
    def testExpandSearchSpace(self):
        exp = {"test-exp": {"run": "f1", "config": {"a": {'d': 'dummy'}}}}
        space = SearchSpace([
            DiscreteSpace('a.b.c', [1, 2]),
            DiscreteSpace('a.d', ['a', 'b']),
        ])
        searcher = GridSearch(space, 'reward')
        searcher.add_configurations(exp)
        trials = searcher.next_trials()

        self.assertEqual(len(trials), 4)
        self.assertTrue(trials[0].config['a']['b']['c'] in [1, 2])
        self.assertTrue(trials[1].config['a']['d'] in ['a', 'b'])
Пример #3
0
    def testSearchRound(self):
        exp = {"test-exp": {"run": "f1", "config": {"a": {"d": "dummy"}}}}
        space = SearchSpace([
            DiscreteSpace("a.b.c", [1, 2]),
            DiscreteSpace("a.d", ["a", "b"]),
        ])
        searcher = GridSearch(space, "reward")
        searcher.add_configurations(exp)
        trials = searcher.next_trials()

        self.assertEqual(len(searcher.next_trials()), 0)
        for trial in trials[1:]:
            searcher.on_trial_complete(trial.trial_id)
        searcher.on_trial_complete(trials[0].trial_id, error=True)

        self.assertTrue(searcher.is_finished())
Пример #4
0
    def testBestTrial(self):
        exp = {"test-exp": {"run": "f1", "config": {"a": {"d": "dummy"}}}}
        space = SearchSpace([
            DiscreteSpace("a.b.c", [1, 2]),
            DiscreteSpace("a.d", ["a", "b"]),
        ])
        searcher = GridSearch(space, "reward")
        searcher.add_configurations(exp)
        trials = searcher.next_trials()

        self.assertEqual(len(searcher.next_trials()), 0)
        for i, trial in enumerate(trials):
            rewards = list(range(i, i + 10))
            random.shuffle(rewards)
            for reward in rewards:
                searcher.on_trial_result(trial.trial_id, {"reward": reward})

        best_trial = searcher.get_best_trial()
        self.assertEqual(best_trial, trials[-1])
        self.assertEqual(best_trial.best_result["reward"], 3 + 10 - 1)
Пример #5
0
    def testBestTrial(self):
        exp = {"test-exp": {"run": "f1", "config": {"a": {'d': 'dummy'}}}}
        space = SearchSpace([
            DiscreteSpace('a.b.c', [1, 2]),
            DiscreteSpace('a.d', ['a', 'b']),
        ])
        searcher = GridSearch(space, 'reward')
        searcher.add_configurations(exp)
        trials = searcher.next_trials()

        self.assertEqual(len(searcher.next_trials()), 0)
        for i, trial in enumerate(trials):
            rewards = [x for x in range(i, i + 10)]
            random.shuffle(rewards)
            for reward in rewards:
                searcher.on_trial_result(trial.trial_id, {"reward": reward})

        best_trial = searcher.get_best_trial()
        self.assertEqual(best_trial, trials[-1])
        self.assertEqual(best_trial.best_result['reward'], 3 + 10 - 1)
Пример #6
0
if __name__ == '__main__':
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument("--smoke-test",
                        action="store_true",
                        help="Finish quickly for testing")
    args, _ = parser.parse_known_args()
    ray.init(redirect_output=True)

    register_trainable("exp", michalewicz_function)

    space = SearchSpace({
        ContinuousSpace('x1', 0, 4, 100),
        ContinuousSpace('x2', -2, 2, 100),
        ContinuousSpace('x3', 1, 5, 100),
        ContinuousSpace('x4', -3, 3, 100),
        DiscreteSpace('x5', [-1, 0, 1, 2, 3]),
    })

    config = {
        "my_exp": {
            "run": "exp",
            "stop": {
                "training_iteration": 100
            },
        }
    }
    algo = GeneticSearch(space,
                         reward_attr="neg_mean_loss",
                         max_generation=2 if args.smoke_test else 10,
def gen_al_space(self):
    """Create space of hyperparameters for the genetic algorithm optimizer.

    This function creates the space of hyperparameter following ray.tune.automl
    syntax.

    Parameters:
        hyper_to_opt (dict): dictionary containing the configuration of the
            hyperparameters to optimize. This dictionary must follow the next
            syntax:

            .. code:: python

                hyper_to_opt = {'hyperparam_1': {'type': ...,
                                                 'range: ...,
                                                 'step': ...},
                                'hyperparam_2': {'type': ...,
                                                 'range: ...,
                                                 'step': ...},
                                ...
                                }

            See the oficial documentation for more details.

    Returns:
        ray.tune.automl.search_space.SearchSpace: space of hyperparameters
        following the syntax required by the genetic algorithm optimizer.

    Example::

        hyper_top_opt = {
            'cnn_rnn_dropout':{
                'type': 'uniform',
                'range': [0,1]},
            'optimizer_type':{
                'type': 'choice',,
                'range': ['Adadelta', 'Adam', 'RMSProp', 'SGD']},
            'layer1_filters':{
                'type': 'quniform',
                'range': [16, 64],
                'step': 1}}

    Raises:
        KeyError: if ``type`` is other than ``uniform``, ``quniform`` or
            ``choice``.
    """

    space = []
    # loop over the hyperparameters to optimize dictionary and add each
    # hyperparameter to the space
    for key, item in self.hyperparams_to_optimize.items():
        if item['type'] == 'uniform':
            space.append(
                ContinuousSpace(key, item['range'][0], item['range'][1],
                                (item['range'][0] - item['range'][1]) * 100))
        elif item['type'] == 'quniform':
            space.append(
                DiscreteSpace(
                    key,
                    list(
                        range(item['range'][0],
                              item['range'][1] + item['step'], item['step']))))
        elif item['type'] == 'choice':
            space.append(DiscreteSpace(key, item['range']))
        else:
            raise KeyError('Genetic algorithm optimization only supports \
                            uniform, quniform and choice space types')
    return SearchSpace(space)
Пример #8
0
    # Negate y since we want to minimize y value
    tune.report(timesteps_total=1, neg_mean_loss=-y)


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--smoke-test", action="store_true", help="Finish quickly for testing")
    args, _ = parser.parse_known_args()

    space = SearchSpace({
        ContinuousSpace("x1", 0, 4, 100),
        ContinuousSpace("x2", -2, 2, 100),
        ContinuousSpace("x3", 1, 5, 100),
        ContinuousSpace("x4", -3, 3, 100),
        DiscreteSpace("x5", [-1, 0, 1, 2, 3]),
    })

    algo = GeneticSearch(
        space,
        reward_attr="neg_mean_loss",
        max_generation=2 if args.smoke_test else 10,
        population_size=10 if args.smoke_test else 50)
    scheduler = AsyncHyperBandScheduler()
    analysis = tune.run(
        michalewicz_function,
        metric="neg_mean_loss",
        mode="max",
        name="my_exp",