Пример #1
0
def broadcast_multigpu(tensor_list,
                       src_rank: int = 0,
                       src_tensor: int = 0,
                       group_name: str = "default"):
    """Broadcast the tensor from a source GPU to all other GPUs.

    Args:
        tensor_list: the tensors to broadcast (src) or receive (dst).
        src_rank (int): the rank of the source process.
        src_tensor (int): the index of the source GPU on the source process.
        group_name (str): the collective group name to perform broadcast.

    Returns:
        None
    """
    if not types.cupy_available():
        raise RuntimeError("Multigpu calls requires NCCL and Cupy.")
    _check_tensor_list_input(tensor_list)
    g = _check_and_get_group(group_name)

    # check src rank
    _check_rank_valid(g, src_rank)
    _check_root_tensor_valid(len(tensor_list), src_tensor)
    opts = types.BroadcastOptions()
    opts.root_rank = src_rank
    opts.root_tensor = src_tensor
    g.broadcast(tensor_list, opts)
Пример #2
0
def broadcast(tensor, src_rank: int = 0, group_name: str = "default"):
    """Broadcast the tensor from a source process to all others.

    Args:
        tensor: the tensor to be broadcasted (src) or received (destination).
        src_rank: the rank of the source process.
        group_name: he collective group name to perform broadcast.

    Returns:
        None
    """
    _check_single_tensor_input(tensor)
    g = _check_and_get_group(group_name)

    # check src rank
    _check_rank_valid(g, src_rank)
    opts = types.BroadcastOptions()
    opts.root_rank = src_rank
    g.broadcast(tensor, opts)