Пример #1
0
def test_predict(tmpdir, ray_start_2_cpus, seed, num_workers):
    """Tests if trained model has high accuracy on test set."""
    config = {
        "layer_1": 32,
        "layer_2": 32,
        "lr": 1e-2,
        "batch_size": 32,
    }

    model = LightningMNISTClassifier(config, tmpdir)
    dm = MNISTDataModule(
        data_dir=tmpdir, num_workers=1, batch_size=config["batch_size"])
    plugin = RayPlugin(num_workers=num_workers, use_gpu=False)
    trainer = get_trainer(
        tmpdir, limit_train_batches=20, max_epochs=1, plugins=[plugin])
    predict_test(trainer, model, dm)
def test_predict_client(tmpdir, start_ray_client_server_2_cpus, seed,
                        num_slots):
    assert ray.util.client.ray.is_connected()
    config = {
        "layer_1": 32,
        "layer_2": 32,
        "lr": 1e-2,
        "batch_size": 32,
    }
    model = LightningMNISTClassifier(config, tmpdir)
    dm = MNISTDataModule(data_dir=tmpdir,
                         num_workers=1,
                         batch_size=config["batch_size"])
    plugin = HorovodRayPlugin(num_slots=num_slots, use_gpu=False)
    trainer = get_trainer(tmpdir,
                          limit_train_batches=20,
                          max_epochs=1,
                          plugins=[plugin])
    predict_test(trainer, model, dm)
Пример #3
0
def test_predict_gpu(tmpdir, ray_start_2_gpus, seed, num_slots):
    """Tests if trained model has high accuracy on test set."""
    config = {
        "layer_1": 32,
        "layer_2": 32,
        "lr": 1e-2,
        "batch_size": 32,
    }
    model = LightningMNISTClassifier(config, tmpdir)
    dm = MNISTDataModule(data_dir=tmpdir,
                         num_workers=1,
                         batch_size=config["batch_size"])
    accelerator = HorovodRayAccelerator(num_slots=num_slots, use_gpu=True)
    trainer = get_trainer(tmpdir,
                          limit_train_batches=10,
                          max_epochs=1,
                          accelerator=accelerator,
                          use_gpu=True)
    predict_test(trainer, model, dm)