Пример #1
0
 def save_checkpoint(self, epoch_score, model):
     if epoch_score not in [-np.inf, np.inf, -np.nan, np.nan]:
         logger.info(
             "[Epoch callback] Validation {} improved ({} --> {}). Saving model!"
             .format(self.metric_name, self.val_score, epoch_score))
         model.save(self.model_path)
     self.val_score = epoch_score
Пример #2
0
def save_args(args):
    param_path = os.path.join(args.model_dir, "params.json")

    logger.info(" [*] MODEL dir: %s" % args.model_dir)
    logger.info(" [*] PARAM path: %s" % param_path)

    with open(param_path, 'w') as fp:
        json.dump(args.__dict__, fp, indent=4, sort_keys=True)
Пример #3
0
def create_dir(dir_path, mode=None):
    """
    Create a directory

    :param dir_path: the directory to create
    :param mode: the permissions to set dir_path to (ie: 0o700)
    """
    if not os.path.exists(dir_path):
        logger.info("[*] Make directories : {}".format(dir_path))
        os.makedirs(dir_path)

    if mode is not None:
        os.chmod(dir_path, mode)
Пример #4
0
 def load(self, model_path, device="cuda", strict=False):
     "恢复模型基本状态"
     self.device = device
     if next(self.parameters()).device != self.device:
         self.to(self.device)
     model_dict = torch.load(model_path, map_location=torch.device(device))
     self.load_state_dict(model_dict["state_dict"], strict=False)
     self.optimizer.load_state_dict(model_dict["optimizer"])
     self.scheduler.load_state_dict(model_dict["scheduler"])
     self.epoch = model_dict["epoch"]
     self.fp16 = model_dict["fp16"]
     self.metrics = model_dict["metrics"]
     self.best_scores = model_dict["best_scores"]
     self.the_one = model_dict["the_one"]
     logger.info(f" [Restor model from] {model_path}...")
Пример #5
0
def log_frozen_and_tunable_parameter_names(model: torch.nn.Module) -> None:
    frozen_parameter_names, tunable_parameter_names = get_frozen_and_tunable_parameter_names(
        model)

    logger.info("The following parameters are Frozen (without gradient):")
    for name in frozen_parameter_names:
        logger.info(name)

    logger.info("The following parameters are Tunable (with gradient):")
    for name in tunable_parameter_names:
        logger.info(name)
Пример #6
0
def process_imdb(path='aclImdb/', csv_save_path='aclImdb/'):
    # Path to dataset location
    path = path

    # Create a dictionary of paths and lists that store lines (key: value = path: list)
    sets_dict = {
        'train/pos/': [],
        'train/neg/': [],
        'test/pos/': [],
        'test/neg/': []
    }

    # Load the data
    for dataset in tqdm(sets_dict):
        sub_dir = os.path.join(path, dataset)
        sets_dict[dataset] = [text for text in load_data(sub_dir)]

    # Concatenate training and testing examples into one dataset
    dataset = pd.concat([
        pd.DataFrame({
            'review': sets_dict['train/pos/'],
            'sentiment': 1
        }),
        pd.DataFrame({
            'review': sets_dict['test/pos/'],
            'sentiment': 1
        }),
        pd.DataFrame({
            'review': sets_dict['train/neg/'],
            'sentiment': 0
        }),
        pd.DataFrame({
            'review': sets_dict['test/neg/'],
            'sentiment': 0
        })
    ],
                        axis=0,
                        ignore_index=True)

    dataset.to_csv(csv_save_path, header=False, encoding='utf-8', index=False)

    logger.info(f"[Saved csv file] {csv_save_path}")
Пример #7
0
 def save(self, model_path):
     "保存模型、优化器、lr调度器、训练基本状态"
     model_state_dict = self.state_dict()
     if self.optimizer is not None:
         opt_state_dict = self.optimizer.state_dict()
     else:
         opt_state_dict = None
     if self.scheduler is not None:
         sch_state_dict = self.scheduler.state_dict()
     else:
         sch_state_dict = None
     model_dict = {}
     model_dict["state_dict"] = model_state_dict
     model_dict["optimizer"] = opt_state_dict
     model_dict["scheduler"] = sch_state_dict
     model_dict["epoch"] = self.epoch
     model_dict["fp16"] = self.fp16
     model_dict["metrics"] = self.metrics
     model_dict["best_scores"] = self.best_scores
     model_dict["the_one"] = self.the_one
     torch.save(model_dict, model_path)
     logger.info(f" [Save model at] {model_path}...")
Пример #8
0
    def on_epoch_end(self, model):
        "通过 CallbackRunner 对象,回调该函数"
        epoch_score = model.metrics[self.model_state][self.metric_name]
        if self.mode == "min":
            score = -1.0 * epoch_score
        else:
            score = np.copy(epoch_score)

        if self.best_score is None:
            self.best_score = score
            self.save_checkpoint(epoch_score, model)
        elif score < self.best_score + self.delta:
            self.counter += 1
            logger.info(
                " [Epoch callback] EarlyStopping counter: {} out of {}".format(
                    self.counter, self.patience))
            # 设置 主训练循环 的早停哨兵值
            if self.counter >= self.patience:
                model.model_state = ModelState.END
        else:
            self.best_score = score
            self.save_checkpoint(epoch_score, model)
            self.counter = 0
Пример #9
0
def train_w2v_model(model_save_dir, sentences: MySentences):
    logger.info('Start...')
    model = Word2Vec(
        sentences,
        sg=0,
        hs=1,
        vector_size=128,
        window=12,
        min_count=1,
        workers=2,
        epochs=5,
    )

    logger.info(model.max_final_vocab)

    model.wv.save_word2vec_format(model_save_dir, binary=False)

    logger.info("Finished.")
Пример #10
0
def backup_file(path):
    root, ext = os.path.splitext(path)
    new_path = "{}.backup_{}{}".format(root, get_time(), ext)

    os.rename(path, new_path)
    logger.info("[*] {} has backup: {}".format(path, new_path))
Пример #11
0
def remove_file(path):
    if os.path.exists(path):
        logger.info(" [*] Removed: {}".format(path))
        os.remove(path)
Пример #12
0
def main():
    # prepare ################################################
    logger.info(get_machine_info())
    filter_warnings()
    prepare_seed(randseed)

    # data ###################################################
    raw_data = pd.read_csv("/tmp/aclImdb_v1.tar/aclImdb/imbd.csv",
                           names=['review', 'sentiment']).fillna(" ")
    print(raw_data.head(5))
    df_train, df_valid = model_selection.train_test_split(
        raw_data,
        test_size=0.1,
        random_state=randseed,
        stratify=raw_data.sentiment.values)
    # df_train = df_train.reset_index(drop=True)
    # df_valid = df_valid.reset_index(drop=True)
    # For test
    df_train = df_train.reset_index(drop=True)[:2000]
    df_valid = df_valid.reset_index(drop=True)[:1000]

    train_dataset = BERTBinaryClsDa(text=df_train.review.values,
                                    target=df_train.sentiment.values)
    valid_dataset = BERTBinaryClsDa(text=df_valid.review.values,
                                    target=df_valid.sentiment.values)

    # Model ###################################################
    n_train_steps = int(len(df_train) / batch_size * epochs)
    model = BERTBaseUncased(num_train_steps=n_train_steps,
                            num_warmup_steps=warmup_steps)

    tf_callback = raych.callbacks.TensorBoardLogger(log_dir=".logs/")
    earlystop = raych.callbacks.EarlyStopping(
        monitor="valid_loss", model_path="./weights/model_early_stop.bin")

    # Train ###################################################
    # 选择使用 学习率查找
    # model.find_lr(
    #     train_dataset,
    #     show_plot=True,
    #     fp16=True,
    #     train_bs=batch_size,
    #     valid_bs=batch_size,
    #     method='linear',
    #     init_value=1e-7,
    #     final_value=10,
    # )

    # 训练
    model.fit(train_dataset,
              valid_dataset=valid_dataset,
              train_bs=batch_size,
              valid_bs=batch_size,
              device=device,
              epochs=epochs,
              callbacks=[tf_callback, earlystop],
              fp16=True,
              best_metric='accuracy',
              enable_fgm=False,
              learn_rate=3e-5)

    # 选择使用 FGM
    # model.fit(
    #     train_dataset,
    #     valid_dataset=valid_dataset,
    #     train_bs=batch_size,
    #     device=device,
    #     epochs=epochs,
    #     callbacks=[tf_callback, earlystop],
    #     learn_rate=3e-5,
    #     fp16=True,
    #     best_metric='accuracy',
    #     enable_fgm=True,
    #     reload_model="./weights/best_1_model_epoch3.bin"
    # )

    model.save("./weights/model_last_epoch.bin")
Пример #13
0
 def model_state(self, value):
     # 可以在设置model_state时,执行一些动作
     self._model_state = value
     logger.info(f" [In State] ### {value} EPOCH {self.epoch} ### ...")
Пример #14
0
 def custom_scheduler(self, *args, **kwargs):
     "定义学习率调节方法"
     logger.info("[Config] custom scheduler is not used")
     return None
Пример #15
0
            {
                "params": [
                    p for name, p in param_optimizer
                    if any(nd in name for nd in no_decay)
                ],
                "weight_decay":
                0.0,
            },
        ]
        opt = torch.optim.Adam(optimizer_parameters, lr=self.lr)  # lr在fit时传入
        return opt


if __name__ == "__main__":
    # prepare ################################################
    logger.info(get_machine_info())
    filter_warnings()
    prepare_seed(23)

    batch_size = 64
    max_vocab_size = 25000
    max_seq_len = 128
    embed_dim = 100
    hid_dim = 256
    out_dim = 1
    n_layers = 2
    bidirectional = True
    dropout = 0.5
    device = "cuda"
    epochs = 10