Пример #1
0
 def matrix_eval(self):
     A_array = assemble(a).array()
     A_array[[0, 1, min_dof_0_2pi, max_dof_0_2pi], :] = A_array[[min_dof_0_2pi, max_dof_0_2pi, 0, 1], :]
     A_array[:, [0, 1, min_dof_0_2pi, max_dof_0_2pi]] = A_array[:, [min_dof_0_2pi, max_dof_0_2pi, 0, 1]]
     A = Matrix(*A_array.shape)
     A[:, :] = A_array
     return A
Пример #2
0
 def jacobian_eval(self, solution):
     self._solution_from_dense_to_sparse(solution)
     jacobian_array = assemble(j).array()
     jacobian_array[[0, 1, min_dof_0_2pi, max_dof_0_2pi], :] = jacobian_array[[min_dof_0_2pi, max_dof_0_2pi, 0, 1], :]
     jacobian_array[:, [0, 1, min_dof_0_2pi, max_dof_0_2pi]] = jacobian_array[:, [min_dof_0_2pi, max_dof_0_2pi, 0, 1]]
     jacobian = Matrix(*jacobian_array.shape)
     jacobian[:, :] = jacobian_array
     return jacobian
Пример #3
0
 def jacobian_eval(self, t, solution, solution_dot, solution_dot_coefficient):
     self._solution_from_dense_to_sparse(solution, u)
     self._solution_from_dense_to_sparse(solution_dot, u_dot)
     jacobian_array = assemble(Constant(solution_dot_coefficient)*j_u_dot + j_u).array()
     jacobian_array[[0, 1, min_dof_0_2pi, max_dof_0_2pi], :] = jacobian_array[[min_dof_0_2pi, max_dof_0_2pi, 0, 1], :]
     jacobian_array[:, [0, 1, min_dof_0_2pi, max_dof_0_2pi]] = jacobian_array[:, [min_dof_0_2pi, max_dof_0_2pi, 0, 1]]
     jacobian = Matrix(*jacobian_array.shape)
     jacobian[:, :] = jacobian_array
     return jacobian
Пример #4
0
def _test_eigen_solver_dense(sparse_LHS, sparse_RHS):
    from rbnics.backends.online.numpy import EigenSolver, Matrix

    # Extract constrained matrices from sparse eigensolver
    LHS = Matrix(*sparse_LHS.array().shape)
    RHS = Matrix(*sparse_RHS.array().shape)
    LHS[:, :] = sparse_LHS.array()
    RHS[:, :] = sparse_RHS.array()

    # Solve the eigenproblem
    solver = EigenSolver(None, LHS, RHS)
    solver.set_parameters({
        "problem_type": "gen_non_hermitian",
        "spectrum": "smallest real",
    })
    solver.solve(1)
    r, c = solver.get_eigenvalue(0)
    assert abs(c) < 1.e-10
    assert r > 0., "r = " + str(r) + " is not positive"
    print("Dense inf-sup constant: ", sqrt(r))
    return (sqrt(r), LHS, RHS)