def test_sampling_composite_beta_generator(): parameter_space_subset = ParameterSpaceSubset() parameter_space_subset.generate(box, n, sampling=(DrawFrom(random.beta, a=2, b=5), DrawFrom(random.beta, a=5, b=1))) plot(0, box, parameter_space_subset, bins, stats.beta, a=2, b=5, loc=box[0][min], scale=box[0][max] - box[0][min]) plot(1, box, parameter_space_subset, bins, stats.beta, a=5, b=1, loc=box[1][min], scale=box[1][max] - box[1][min]) plt.show()
def __init__(self, a, b): assert isinstance(a, (list, tuple)) assert isinstance(b, (list, tuple)) assert len(a) == len(b) CompositeDistribution.__init__( self, [DrawFrom(random.beta, a=a_p, b=b_p) for (a_p, b_p) in zip(a, b)])
def test_sampling_composite_log_uniform_and_beta(): parameter_space_subset = ParameterSpaceSubset() parameter_space_subset.generate(box, n, sampling=(LogUniformDistribution(), DrawFrom(random.beta, a=2, b=5))) plot(0, box, parameter_space_subset, bins, stats_loguniform, loc=box[0][min], scale=box[0][max] - box[0][min]) plot(1, box, parameter_space_subset, bins, stats.beta, a=2, b=5, loc=box[1][min], scale=box[1][max] - box[1][min]) plt.show()