Пример #1
0
def python_string_to_sympy(string_expression: tuple_of(tuple_of(str)), x_symb: (Matrix, MatrixSymbol, None), mu_symb: (Matrix, MatrixSymbol, None)):
    assert all([len(si) == len(string_expression[0]) for si in string_expression[1:]])
    sympy_expression = zeros(len(string_expression), len(string_expression[0]))
    for (i, si) in enumerate(string_expression):
        for (j, sij) in enumerate(si):
            sympy_expression[i, j] = sympify(sij, locals={"x": x_symb, "mu": mu_symb})
    return ImmutableMatrix(sympy_expression)
Пример #2
0
def python_string_to_sympy(string_expression: tuple_of(tuple_of(str)), problem: ParametrizedProblem):
    """
    Convert a matrix of strings (with math python syntax, e.g. **2 instead of pow(., 2)) to sympy
    """
    x_symb = sympy_symbolic_coordinates(problem.V.mesh().geometry().dim(), MatrixListSymbol)
    mu_symb = MatrixListSymbol("mu", len(problem.mu), 1)
    return python_string_to_sympy(string_expression, x_symb, mu_symb)
Пример #3
0
def _AffineExpansionStorage(args: (
    tuple_of(Form),
    tuple_of(Matrix.Type()),
    tuple_of(Vector.Type()),
    tuple_of((Form, Matrix.Type())),
    tuple_of((Form, Vector.Type()))
)):
    return AffineExpansionStorage_Form(args)
Пример #4
0
def _product(thetas: ThetaType, operators: tuple_of(Matrix.Type())):
    output = tensor_copy(operators[0])
    output.zero()
    for (theta, operator) in zip(thetas, operators):
        theta = float(theta)
        output += theta * operator
    return ProductOutput(output)
Пример #5
0
def _product(thetas: ThetaType,
             operators: tuple_of(ParametrizedTensorFactory)):
    operators_as_forms = tuple(operator._form for operator in operators)
    try:
        output = _product_parametrized_tensor_factories_output_cache[
            operators_as_forms]
    except KeyError:
        # Keep the operators as ParametrizedTensorFactories and delay assembly as long as possible
        output = _product(thetas, operators_as_forms)
        output = ParametrizedTensorFactory(output.sum_product_return_value)
        problems = [
            get_problem_from_parametrized_operator(operator)
            for operator in operators
        ]
        assert all([problem is problems[0] for problem in problems])
        add_to_map_from_parametrized_operator_to_problem(output, problems[0])
        output = ProductOutput(output)
        _product_parametrized_tensor_factories_output_cache[
            operators_as_forms] = output
        _product_parametrized_tensor_factories_constants_cache[
            operators_as_forms] = _product_forms_constants_cache[
                operators_as_forms]
        return output
    else:
        constants = _product_parametrized_tensor_factories_constants_cache[
            operators_as_forms]
        for (theta, constant) in zip(thetas, constants):
            theta = float(theta)
            constant.assign(theta)
        return output
Пример #6
0
def python_string_to_sympy(string_expression: tuple_of(str),
                           x_symb: (Matrix, MatrixSymbol, None),
                           mu_symb: (Matrix, MatrixSymbol, None)):
    sympy_expression = zeros(len(string_expression), 1)
    for (i, si) in enumerate(string_expression):
        sympy_expression[i] = sympify(si, locals={"x": x_symb, "mu": mu_symb})
    return ImmutableMatrix(sympy_expression)
Пример #7
0
def _product(thetas: ThetaType, operators: tuple_of(Vector.Type())):
    output = tensor_copy(operators[0])
    output.zero()
    for (theta, operator) in zip(thetas, operators):
        theta = float(theta)
        output.add_local(theta * operator.get_local())
    output.apply("add")
    return ProductOutput(output)
Пример #8
0
    class _Evaluate(object):
        @overload(backend.Matrix.Type(), None)
        def __call__(self, matrix, at):
            return matrix

        @overload(backend.Matrix.Type(), tuple_of(int))
        def __call__(self, matrix, at):
            assert len(at) == 2
            return matrix[at]

        @overload(backend.Vector.Type(), None)
        def __call__(self, vector, at):
            return vector

        @overload(backend.Vector.Type(), tuple_of(int))
        def __call__(self, vector, at):
            assert len(at) == 1
            return vector
Пример #9
0
def _function_from_ufl_component_tensor(expression: Product, indices: tuple_of(IndexBase)):
    factor_1 = expression.ufl_operands[0]
    factor_2 = expression.ufl_operands[1]
    assert isinstance(factor_1, (Number, ScalarValue)) or isinstance(factor_2, (Number, ScalarValue))
    if isinstance(factor_1, (Number, ScalarValue)):
        factor_2 = as_tensor(factor_2, indices)
    else:  # isinstance(factor_2, (Number, ScalarValue))
        factor_1 = as_tensor(factor_1, indices)
    return _function_from_ufl_product(factor_1, factor_2)
Пример #10
0
def _diff_content(
        reference_items: (list_of(object), tuple_of(object)),
        current_items: (list_of(object), tuple_of(object)), tab: str):
    if len(reference_items) != len(current_items):
        return [
            tab + "@@ different lengths @@" + "\n" + tab + "- " +
            str(len(reference_items)) + "\n" + tab + "+ " +
            str(len(current_items)) + "\n"
        ]
    else:
        diff_items = list()
        for (item_number,
             (reference_item,
              current_item)) in enumerate(zip(reference_items, current_items)):
            diff_item = _diff_content(reference_item, current_item, tab + "\t")
            if len(diff_item) > 0:
                for d in diff_item:
                    diff_items.append(tab + "@@ " + str(item_number) + " @@" +
                                      "\n" + d)
        return diff_items
Пример #11
0
def test_inheritance_for_dict_of_keys_tuple_of():
    class A(object):
        pass
    class B(object):
        pass
    class C(A):
        pass
    
    @dispatch(dict_of(tuple_of(A), int))
    def f(x):
        return 'a'

    @dispatch(dict_of(tuple_of(B), int))
    def f(x):
        return 'b'

    assert f({(A(), A()): 1}) == 'a'
    assert f({(B(), B()): 2}) == 'b'
    assert f({(C(), C()): 3}) == 'a'
    assert f({(C(), A()): 4}) == 'a'
    assert raises(UnavailableSignatureError, lambda: f({(B(), B()): 5.}))
Пример #12
0
def test_register_stacking__list_of__tuple_of():
    f = Dispatcher('f')

    @f.register(list_of(int))
    @f.register(tuple_of(int))
    def rev(x):
        return x[::-1]

    assert f((1, 2, 3)) == (3, 2, 1)
    assert f([1, 2, 3]) == [3, 2, 1]

    assert raises(UnavailableSignatureError, lambda: f('hello'))
    assert rev('hello') == 'olleh'
Пример #13
0
def _product(thetas: ThetaType, operators: tuple_of(Form)):
    try:
        output = _product_forms_output_cache[operators]
    except KeyError:
        # Keep the operators as Forms and delay assembly as long as possible
        output = 0
        constants = list()
        for (theta, operator) in zip(thetas, operators):
            theta = float(theta)
            constant = Constant(theta)
            output += constant * operator
            constants.append(constant)
        output = ProductOutput(output)
        _product_forms_output_cache[operators] = output
        _product_forms_constants_cache[operators] = constants
        return output
    else:
        constants = _product_forms_constants_cache[operators]
        for (theta, constant) in zip(thetas, constants):
            theta = float(theta)
            constant.assign(theta)
        return output
Пример #14
0
def _function_from_ufl_component_tensor(expression: Sum, indices: tuple_of(IndexBase)):
    addend_1 = as_tensor(expression.ufl_operands[0], indices)
    addend_2 = as_tensor(expression.ufl_operands[1], indices)
    return _function_from_ufl_sum(addend_1, addend_2)
Пример #15
0
def _function_from_ufl_component_tensor(expression: Division, indices: tuple_of(IndexBase)):
    nominator_function = as_tensor(expression.ufl_operands[0], indices)
    denominator = expression.ufl_operands[1]
    return _function_from_ufl_division(nominator_function, denominator)
Пример #16
0
# Copyright (C) 2015-2021 by the RBniCS authors
#
# This file is part of RBniCS.
#
# SPDX-License-Identifier: LGPL-3.0-or-later

from numbers import Number
from numpy import arange, isclose
from rbnics.backends.abstract import TimeSeries as AbstractTimeSeries
from rbnics.utils.decorators import BackendFor, overload, tuple_of


@BackendFor("common", inputs=((tuple_of(Number), AbstractTimeSeries), (Number, None)))
class TimeSeries(AbstractTimeSeries):
    def __init__(self, *args):
        assert len(args) in (1, 2)
        if len(args) == 1:
            other_time_series, = args
            assert isinstance(other_time_series, TimeSeries)
            self._time_interval = other_time_series._time_interval
            self._time_step_size = other_time_series._time_step_size
        else:
            time_interval, time_step_size = args
            self._time_interval = time_interval
            self._time_step_size = time_step_size
        self._times = arange(self._time_interval[0], self._time_interval[1] + self._time_step_size / 2.,
                             self._time_step_size).tolist()
        self._list = list()

    def stored_times(self):
        return self._times[:len(self._list)]
Пример #17
0
        class ExactParametrizedFunctionsDecoratedProblem_Class(
                ParametrizedDifferentialProblem_DerivedClass):

            # Default initialization of members
            def __init__(self, V, **kwargs):
                # Call the parent initialization
                ParametrizedDifferentialProblem_DerivedClass.__init__(
                    self, V, **kwargs)
                # Storage for symbolic parameters
                self.mu_symbolic = None

                # Store values passed to decorator
                self._store_exact_evaluation_stages(stages)

                # Generate offline online backend for current problem
                self.offline_online_backend = OfflineOnlineBackend(self.name())

            @overload(str)
            def _store_exact_evaluation_stages(self, stage):
                assert stages != "online", "This choice does not make any sense because it requires an EIM/DEIM offline stage which then is not used online"
                assert stages == "offline"
                self._apply_exact_evaluation_at_stages = (stages, )

            @overload(tuple_of(str))
            def _store_exact_evaluation_stages(self, stage):
                assert len(stages) in (1, 2)
                assert stages[0] in ("offline", "online")
                if len(stages) > 1:
                    assert stages[1] in ("offline", "online")
                    assert stages[0] != stages[1]
                self._apply_exact_evaluation_at_stages = stages

            def init(self):
                has_disable_init_operators = hasattr(
                    self, "disable_init_operators"
                )  # may be shared between EIM/DEIM and exact evaluation
                # Call parent's method (enforcing an empty parent call to _init_operators)
                if not has_disable_init_operators:
                    self.disable_init_operators = PatchInstanceMethod(
                        self, "_init_operators", lambda self_: None)
                self.disable_init_operators.patch()
                ParametrizedDifferentialProblem_DerivedClass.init(self)
                self.disable_init_operators.unpatch()
                if not has_disable_init_operators:
                    del self.disable_init_operators
                # Then, initialize exact operators
                self._init_operators_exact()

            def _init_operators_exact(self):
                # Initialize symbolic parameters only once
                if self.mu_symbolic is None:
                    self.mu_symbolic = SymbolicParameters(
                        self, self.V, self.mu)
                # Initialize offline/online switch storage only once (may be shared between EIM/DEIM and exact evaluation)
                OfflineOnlineClassMethod = self.offline_online_backend.OfflineOnlineClassMethod
                OfflineOnlineExpansionStorage = self.offline_online_backend.OfflineOnlineExpansionStorage
                OfflineOnlineExpansionStorageSize = self.offline_online_backend.OfflineOnlineExpansionStorageSize
                OfflineOnlineSwitch = self.offline_online_backend.OfflineOnlineSwitch
                if not isinstance(self.Q, OfflineOnlineSwitch):
                    assert isinstance(self.Q, dict)
                    assert len(self.Q) is 0
                    self.Q = OfflineOnlineExpansionStorageSize()
                if not isinstance(self.operator, OfflineOnlineSwitch):
                    assert isinstance(self.operator, dict)
                    assert len(self.operator) is 0
                    self.operator = OfflineOnlineExpansionStorage(
                        self, "OperatorExpansionStorage")
                if not isinstance(self.assemble_operator, OfflineOnlineSwitch):
                    assert inspect.ismethod(self.assemble_operator)
                    self._assemble_operator_exact = self.assemble_operator
                    self.assemble_operator = OfflineOnlineClassMethod(
                        self, "assemble_operator")
                if not isinstance(self.compute_theta, OfflineOnlineSwitch):
                    assert inspect.ismethod(self.compute_theta)
                    self._compute_theta_exact = self.compute_theta
                    self.compute_theta = OfflineOnlineClassMethod(
                        self, "compute_theta")
                # Temporarily replace float parameters with symbols, so that the forms do not hardcode
                # the current value of the parameter while assemblying.
                mu_float = self.mu
                self.mu = self.mu_symbolic
                # Setup offline/online switches
                former_stage = OfflineOnlineSwitch.get_current_stage()
                for stage_exact in self._apply_exact_evaluation_at_stages:
                    OfflineOnlineSwitch.set_current_stage(stage_exact)
                    # Enforce exact evaluation of assemble_operator and compute_theta
                    self.assemble_operator.attach(
                        self._assemble_operator_exact, lambda term: True)
                    self.compute_theta.attach(self._compute_theta_exact,
                                              lambda term: True)
                    # Setup offline/online operators storage with exact operators
                    self.operator.set_is_affine(False)
                    self._init_operators()
                    self.operator.unset_is_affine()
                # Restore former stage in offline/online switch storage
                OfflineOnlineSwitch.set_current_stage(former_stage)
                # Restore float parameters
                self.mu = mu_float

            def solve(self, **kwargs):
                # Exact operators should be used regardless of the current stage
                OfflineOnlineSwitch = self.offline_online_backend.OfflineOnlineSwitch
                former_stage = OfflineOnlineSwitch.get_current_stage()
                OfflineOnlineSwitch.set_current_stage("offline")
                # Call Parent method
                solution = ParametrizedDifferentialProblem_DerivedClass.solve(
                    self, **kwargs)
                # Restore former stage in offline/online switch storage
                OfflineOnlineSwitch.set_current_stage(former_stage)
                # Return
                return solution

            def compute_output(self):
                # Exact operators should be used regardless of the current stage
                OfflineOnlineSwitch = self.offline_online_backend.OfflineOnlineSwitch
                former_stage = OfflineOnlineSwitch.get_current_stage()
                OfflineOnlineSwitch.set_current_stage("offline")
                # Call Parent method
                output = ParametrizedDifferentialProblem_DerivedClass.compute_output(
                    self)
                # Restore former stage in offline/online switch storage
                OfflineOnlineSwitch.set_current_stage(former_stage)
                # Return
                return output

            def _cache_key_from_kwargs(self, **kwargs):
                cache_key = ParametrizedDifferentialProblem_DerivedClass._cache_key_from_kwargs(
                    self, **kwargs)
                # Change cache key depending on current stage
                OfflineOnlineSwitch = self.offline_online_backend.OfflineOnlineSwitch
                if OfflineOnlineSwitch.get_current_stage(
                ) in self._apply_exact_evaluation_at_stages:
                    # Append current stage to cache key
                    cache_key = cache_key + ("exact_evaluation", )
                # Return
                return cache_key
Пример #18
0
class OnlineNonHierarchicalAffineExpansionStorage(object):
    def __init__(self, arg1):
        self._content = dict()
        self._len = arg1
        
    @overload(slice)
    def __getitem__(self, key):
        N = self._convert_key(key)
        assert N in self._content
        return self._content[N]
        
    @overload(tuple_of(slice))
    def __getitem__(self, key):
        assert len(key) is 2
        assert key[0] == key[1]
        return self.__getitem__(key[0])
        
    @overload(slice, OnlineAffineExpansionStorage)
    def __setitem__(self, key, item):
        N = self._convert_key(key)
        assert len(item) is self._len
        self._content[N] = item
        
    @overload(tuple_of(slice), OnlineAffineExpansionStorage)
    def __setitem__(self, key, item):
        assert len(key) is 2
        assert key[0] == key[1]
        return self.__setitem__(key[0], item)
        
    def _convert_key(self, key):
        assert key.start is None
        assert key.step is None
        assert isinstance(key.stop, (dict, int))
        if isinstance(key.stop, dict):
            assert len(key.stop) is 1
            assert "u" in key.stop
            N = key.stop["u"]
        else:
            N = key.stop
        return N
        
    def save(self, directory, filename):
        # Get full directory name
        full_directory = Folders.Folder(os.path.join(str(directory), filename))
        full_directory.create()
        # Save Nmax
        self._save_Nmax(full_directory)
        # Save non hierarchical content
        for (N, affine_expansion_N) in self._content.items():
            self._save_content(N, affine_expansion_N, directory, filename)
            
    def _save_Nmax(self, full_directory):
        if len(self._content) > 0:
            assert min(self._content.keys()) == 1
            assert max(self._content.keys()) == len(self._content)
        NmaxIO.save_file(len(self._content), full_directory, "Nmax")
            
    def _save_content(self, N, affine_expansion_N, directory, filename):
        affine_expansion_N.save(directory, filename + "_N=" + str(N))
        
    def load(self, directory, filename):
        if len(self._content) > 0: # avoid loading multiple times
            return False
        # Get full directory name
        full_directory = Folders.Folder(os.path.join(str(directory), filename))
        # Load Nmax
        Nmax = self._load_Nmax(full_directory)
        # Load non hierarchical content
        for N in range(1, Nmax + 1):
            self._content[N] = self._load_content(N, directory, filename)
        # Return
        return True
        
    def _load_Nmax(self, full_directory):
        assert NmaxIO.exists_file(full_directory, "Nmax")
        return NmaxIO.load_file(full_directory, "Nmax")
        
    def _load_content(self, N, directory, filename):
        affine_expansion_N = OnlineAffineExpansionStorage(self._len)
        loaded = affine_expansion_N.load(directory, filename + "_N=" + str(N))
        assert loaded is True
        return affine_expansion_N
        
    def __len__(self):
        return self._len
Пример #19
0
class NonAffineExpansionStorage(AbstractNonAffineExpansionStorage):
    def __init__(self, *shape):
        self._shape = shape
        self._type = "empty"
        self._content = dict()
        self._precomputed_slices = Cache(
        )  # from tuple to NonAffineExpansionStorage
        assert len(shape) in (1, 2)
        if len(shape) is 1:
            self._smallest_key = 0
            self._largest_key = shape[0] - 1
        else:
            self._smallest_key = (0, 0)
            self._largest_key = (shape[0] - 1, shape[1] - 1)

    def save(self, directory, filename):
        # Get full directory name
        full_directory = Folders.Folder(os.path.join(str(directory), filename))
        full_directory.create()
        # Export depending on type
        TypeIO.save_file(self._type, full_directory, "type")
        assert self._type in ("basis_functions_matrix", "empty",
                              "error_estimation_operators_11",
                              "error_estimation_operators_21",
                              "error_estimation_operators_22",
                              "functions_list", "operators")
        if self._type in ("basis_functions_matrix", "functions_list"):
            # Save delayed functions
            delayed_functions = self._content[self._type]
            it = NonAffineExpansionStorageContent_Iterator(
                delayed_functions,
                flags=["c_index", "multi_index", "refs_ok"],
                op_flags=["readonly"])
            while not it.finished:
                delayed_function = delayed_functions[it.multi_index]
                delayed_function.save(full_directory,
                                      "delayed_functions_" + str(it.index))
                it.iternext()
        elif self._type == "empty":
            pass
        elif self._type in ("error_estimation_operators_11",
                            "error_estimation_operators_21",
                            "error_estimation_operators_22"):
            # Save delayed functions
            delayed_function_type = {
                DelayedBasisFunctionsMatrix: "DelayedBasisFunctionsMatrix",
                DelayedLinearSolver: "DelayedLinearSolver"
            }
            assert len(self._content["delayed_functions"]) is 2
            for (index, delayed_functions) in enumerate(
                    self._content["delayed_functions"]):
                it = NonAffineExpansionStorageContent_Iterator(
                    delayed_functions,
                    flags=["c_index", "refs_ok"],
                    op_flags=["readonly"])
                while not it.finished:
                    delayed_function = delayed_functions[it.index]
                    DelayedFunctionsTypeIO.save_file(
                        delayed_function_type[type(delayed_function)],
                        full_directory, "delayed_functions_" + str(index) +
                        "_" + str(it.index) + "_type")
                    DelayedFunctionsProblemNameIO.save_file(
                        delayed_function.get_problem_name(), full_directory,
                        "delayed_functions_" + str(index) + "_" +
                        str(it.index) + "_problem_name")
                    delayed_function.save(
                        full_directory, "delayed_functions_" + str(index) +
                        "_" + str(it.index) + "_content")
                    it.iternext()
            ErrorEstimationInnerProductIO.save_file(
                get_reduced_problem_from_error_estimation_inner_product(
                    self._content["inner_product_matrix"]).truth_problem.name(
                    ), full_directory, "inner_product_matrix_problem_name")
        elif self._type == "operators":
            # Save truth content
            it = NonAffineExpansionStorageContent_Iterator(
                self._content["truth_operators"],
                flags=["c_index", "multi_index", "refs_ok"],
                op_flags=["readonly"])
            while not it.finished:
                operator = self._content["truth_operators"][it.multi_index]
                assert isinstance(
                    operator, (AbstractParametrizedTensorFactory, NumericForm))
                if isinstance(operator, AbstractParametrizedTensorFactory):
                    problem_name = get_problem_from_parametrized_operator(
                        operator).name()
                    (term,
                     index) = get_term_and_index_from_parametrized_operator(
                         operator)
                    TruthContentItemIO.save_file(
                        "ParametrizedTensorFactory", full_directory,
                        "truth_operator_" + str(it.index) + "_type")
                    TruthContentItemIO.save_file(
                        (problem_name, term, index), full_directory,
                        "truth_operator_" + str(it.index))
                elif isinstance(operator, NumericForm):
                    TruthContentItemIO.save_file(
                        "NumericForm", full_directory,
                        "truth_operator_" + str(it.index) + "_type")
                    TruthContentItemIO.save_file(
                        operator, full_directory,
                        "truth_operator_" + str(it.index))
                else:
                    raise TypeError("Invalid operator type")
                it.iternext()
            assert "truth_operators_as_expansion_storage" in self._content
            # Save basis functions content
            assert len(self._content["basis_functions"]) in (0, 1, 2)
            BasisFunctionsContentLengthIO.save_file(
                len(self._content["basis_functions"]), full_directory,
                "basis_functions_length")
            for (index, basis_functions) in enumerate(
                    self._content["basis_functions"]):
                BasisFunctionsProblemNameIO.save_file(
                    get_reduced_problem_from_basis_functions(
                        basis_functions).truth_problem.name(), full_directory,
                    "basis_functions_" + str(index) + "_problem_name")
                BasisFunctionsProblemNameIO.save_file(
                    basis_functions._components_name, full_directory,
                    "basis_functions_" + str(index) + "_components_name")
        else:
            raise ValueError("Invalid type")

    def load(self, directory, filename):
        if self._type != "empty":  # avoid loading multiple times
            if self._type in ("basis_functions_matrix", "functions_list"):
                delayed_functions = self._content[self._type]
                it = NonAffineExpansionStorageContent_Iterator(
                    delayed_functions,
                    flags=["c_index", "multi_index", "refs_ok"],
                    op_flags=["readonly"])
                while not it.finished:
                    if isinstance(delayed_functions[it.multi_index],
                                  DelayedFunctionsList):
                        assert self._type == "functions_list"
                        if len(
                                delayed_functions[it.multi_index]
                        ) > 0:  # ... unless it is an empty FunctionsList
                            return False
                    elif isinstance(delayed_functions[it.multi_index],
                                    DelayedBasisFunctionsMatrix):
                        assert self._type == "basis_functions_matrix"
                        if sum(
                                delayed_functions[it.multi_index].
                                _component_name_to_basis_component_length.
                                values()
                        ) > 0:  # ... unless it is an empty BasisFunctionsMatrix
                            return False
                    else:
                        raise TypeError("Invalid delayed functions")
                    it.iternext()
            else:
                return False
        # Get full directory name
        full_directory = Folders.Folder(os.path.join(str(directory), filename))
        # Detect trivial case
        assert TypeIO.exists_file(full_directory, "type")
        imported_type = TypeIO.load_file(full_directory, "type")
        self._type = imported_type
        assert self._type in ("basis_functions_matrix", "empty",
                              "error_estimation_operators_11",
                              "error_estimation_operators_21",
                              "error_estimation_operators_22",
                              "functions_list", "operators")
        if self._type in ("basis_functions_matrix", "functions_list"):
            # Load delayed functions
            assert self._type in self._content
            delayed_functions = self._content[self._type]
            it = NonAffineExpansionStorageContent_Iterator(
                delayed_functions, flags=["c_index", "multi_index", "refs_ok"])
            while not it.finished:
                delayed_function = delayed_functions[it.multi_index]
                delayed_function.load(full_directory,
                                      "delayed_functions_" + str(it.index))
                it.iternext()
        elif self._type == "empty":
            pass
        elif self._type in ("error_estimation_operators_11",
                            "error_estimation_operators_21",
                            "error_estimation_operators_22"):
            # Load delayed functions
            assert "delayed_functions" not in self._content
            self._content["delayed_functions"] = [
                NonAffineExpansionStorageContent_Base(self._shape[0],
                                                      dtype=object),
                NonAffineExpansionStorageContent_Base(self._shape[1],
                                                      dtype=object)
            ]
            for (index, delayed_functions) in enumerate(
                    self._content["delayed_functions"]):
                it = NonAffineExpansionStorageContent_Iterator(
                    delayed_functions, flags=["c_index", "refs_ok"])
                while not it.finished:
                    assert DelayedFunctionsTypeIO.exists_file(
                        full_directory, "delayed_functions_" + str(index) +
                        "_" + str(it.index) + "_type")
                    delayed_function_type = DelayedFunctionsTypeIO.load_file(
                        full_directory, "delayed_functions_" + str(index) +
                        "_" + str(it.index) + "_type")
                    assert DelayedFunctionsProblemNameIO.exists_file(
                        full_directory, "delayed_functions_" + str(index) +
                        "_" + str(it.index) + "_problem_name")
                    delayed_function_problem_name = DelayedFunctionsProblemNameIO.load_file(
                        full_directory, "delayed_functions_" + str(index) +
                        "_" + str(it.index) + "_problem_name")
                    delayed_function_problem = get_problem_from_problem_name(
                        delayed_function_problem_name)
                    assert delayed_function_type in (
                        "DelayedBasisFunctionsMatrix", "DelayedLinearSolver")
                    if delayed_function_type == "DelayedBasisFunctionsMatrix":
                        delayed_function = DelayedBasisFunctionsMatrix(
                            delayed_function_problem.V)
                        delayed_function.init(
                            delayed_function_problem.components)
                    elif delayed_function_type == "DelayedLinearSolver":
                        delayed_function = DelayedLinearSolver()
                    else:
                        raise ValueError("Invalid delayed function")
                    delayed_function.load(
                        full_directory, "delayed_functions_" + str(index) +
                        "_" + str(it.index) + "_content")
                    delayed_functions[it.index] = delayed_function
                    it.iternext()
            # Load inner product
            assert ErrorEstimationInnerProductIO.exists_file(
                full_directory, "inner_product_matrix_problem_name")
            inner_product_matrix_problem_name = ErrorEstimationInnerProductIO.load_file(
                full_directory, "inner_product_matrix_problem_name")
            inner_product_matrix_problem = get_problem_from_problem_name(
                inner_product_matrix_problem_name)
            inner_product_matrix_reduced_problem = get_reduced_problem_from_problem(
                inner_product_matrix_problem)
            self._content[
                "inner_product_matrix"] = inner_product_matrix_reduced_problem._error_estimation_inner_product
            # Recompute shape
            assert "delayed_functions_shape" not in self._content
            self._content["delayed_functions_shape"] = DelayedTransposeShape(
                (self._content["delayed_functions"][0][0],
                 self._content["delayed_functions"][1][0]))
            # Prepare precomputed slices
            self._precomputed_slices.clear()
            self._prepare_trivial_precomputed_slice()
        elif self._type == "empty":
            pass
        elif self._type == "operators":
            # Load truth content
            assert "truth_operators" not in self._content
            self._content[
                "truth_operators"] = NonAffineExpansionStorageContent_Base(
                    self._shape, dtype=object)
            it = NonAffineExpansionStorageContent_Iterator(
                self._content["truth_operators"],
                flags=["c_index", "multi_index", "refs_ok"])
            while not it.finished:
                assert TruthContentItemIO.exists_file(
                    full_directory,
                    "truth_operator_" + str(it.index) + "_type")
                operator_type = TruthContentItemIO.load_file(
                    full_directory,
                    "truth_operator_" + str(it.index) + "_type")
                assert operator_type in ("NumericForm",
                                         "ParametrizedTensorFactory")
                if operator_type == "NumericForm":
                    assert TruthContentItemIO.exists_file(
                        full_directory, "truth_operator_" + str(it.index))
                    value = TruthContentItemIO.load_file(
                        full_directory, "truth_operator_" + str(it.index))
                    self._content["truth_operators"][
                        it.multi_index] = NumericForm(value)
                elif operator_type == "ParametrizedTensorFactory":
                    assert TruthContentItemIO.exists_file(
                        full_directory, "truth_operator_" + str(it.index))
                    (problem_name, term, index) = TruthContentItemIO.load_file(
                        full_directory, "truth_operator_" + str(it.index))
                    truth_problem = get_problem_from_problem_name(problem_name)
                    self._content["truth_operators"][
                        it.multi_index] = truth_problem.operator[term][index]
                else:
                    raise ValueError("Invalid operator type")
                it.iternext()
            assert "truth_operators_as_expansion_storage" not in self._content
            self._prepare_truth_operators_as_expansion_storage()
            # Load basis functions content
            assert BasisFunctionsContentLengthIO.exists_file(
                full_directory, "basis_functions_length")
            basis_functions_length = BasisFunctionsContentLengthIO.load_file(
                full_directory, "basis_functions_length")
            assert basis_functions_length in (0, 1, 2)
            assert "basis_functions" not in self._content
            self._content["basis_functions"] = list()
            for index in range(basis_functions_length):
                assert BasisFunctionsProblemNameIO.exists_file(
                    full_directory,
                    "basis_functions_" + str(index) + "_problem_name")
                basis_functions_problem_name = BasisFunctionsProblemNameIO.load_file(
                    full_directory,
                    "basis_functions_" + str(index) + "_problem_name")
                assert BasisFunctionsProblemNameIO.exists_file(
                    full_directory,
                    "basis_functions_" + str(index) + "_components_name")
                basis_functions_components_name = BasisFunctionsProblemNameIO.load_file(
                    full_directory,
                    "basis_functions_" + str(index) + "_components_name")
                basis_functions_problem = get_problem_from_problem_name(
                    basis_functions_problem_name)
                basis_functions_reduced_problem = get_reduced_problem_from_problem(
                    basis_functions_problem)
                basis_functions = basis_functions_reduced_problem.basis_functions
                if basis_functions_components_name != basis_functions_problem.components:
                    basis_functions = basis_functions[
                        basis_functions_components_name]
                self._content["basis_functions"].append(basis_functions)
            # Recompute shape
            self._content["basis_functions_shape"] = DelayedTransposeShape(
                self._content["basis_functions"])
            # Reset precomputed slices
            self._precomputed_slices.clear()
            self._prepare_trivial_precomputed_slice()
        else:
            raise ValueError("Invalid type")
        return True

    def _prepare_trivial_precomputed_slice(self):
        empty_slice = slice(None)
        assert self._type in ("error_estimation_operators_11",
                              "error_estimation_operators_21",
                              "error_estimation_operators_22", "operators")
        if self._type == "error_estimation_operators_11":
            pass  # nothing to be done (scalar content)
        elif self._type == "error_estimation_operators_21":
            assert "delayed_functions" in self._content
            assert len(self._content["delayed_functions"]) is 2
            assert "delayed_functions_shape" in self._content

            slice_ = slice_to_array(
                self._content["delayed_functions_shape"], empty_slice,
                self._content["delayed_functions_shape"].
                _component_name_to_basis_component_length,
                self._content["delayed_functions_shape"].
                _component_name_to_basis_component_index)
            self._precomputed_slices[slice_] = self
        elif self._type == "error_estimation_operators_22":
            assert "delayed_functions" in self._content
            assert len(self._content["delayed_functions"]) is 2
            assert "delayed_functions_shape" in self._content

            slice_ = slice_to_array(
                self._content["delayed_functions_shape"],
                (empty_slice, empty_slice),
                self._content["delayed_functions_shape"].
                _component_name_to_basis_component_length,
                self._content["delayed_functions_shape"].
                _component_name_to_basis_component_index)
            self._precomputed_slices[slice_] = self
        elif self._type == "operators":
            assert len(self._content["basis_functions"]) in (0, 1, 2)
            assert "basis_functions_shape" in self._content

            if len(self._content["basis_functions"]) is 0:
                pass  # nothing to be done (scalar content)
            elif len(self._content["basis_functions"]) is 1:
                slice_ = slice_to_array(
                    self._content["basis_functions_shape"], empty_slice,
                    self._content["basis_functions_shape"].
                    _component_name_to_basis_component_length,
                    self._content["basis_functions_shape"].
                    _component_name_to_basis_component_index)
                self._precomputed_slices[slice_] = self
            elif len(self._content["basis_functions"]) is 2:
                slices = slice_to_array(
                    self._content["basis_functions_shape"],
                    (empty_slice, empty_slice),
                    self._content["basis_functions_shape"].
                    _component_name_to_basis_component_length,
                    self._content["basis_functions_shape"].
                    _component_name_to_basis_component_index)
                self._precomputed_slices[slices] = self
            else:
                raise ValueError("Invalid length")
        else:
            raise ValueError("Invalid type")

    @overload(
        slice, )
    def __getitem__(self, key):
        assert self._type in ("error_estimation_operators_21", "operators")
        if self._type == "error_estimation_operators_21":
            assert "delayed_functions" in self._content
            assert len(self._content["delayed_functions"]) is 2
            assert "delayed_functions_shape" in self._content

            slice_ = slice_to_array(
                self._content["delayed_functions_shape"], key,
                self._content["delayed_functions_shape"].
                _component_name_to_basis_component_length,
                self._content["delayed_functions_shape"].
                _component_name_to_basis_component_index)

            if slice_ in self._precomputed_slices:
                return self._precomputed_slices[slice_]
            else:
                output = NonAffineExpansionStorage.__new__(
                    type(self), *self._shape)
                output.__init__(*self._shape)
                output._type = self._type
                output._content["inner_product_matrix"] = self._content[
                    "inner_product_matrix"]
                output._content["delayed_functions"] = [
                    NonAffineExpansionStorageContent_Base(self._shape[0],
                                                          dtype=object),
                    NonAffineExpansionStorageContent_Base(self._shape[1],
                                                          dtype=object)
                ]
                for q in range(self._shape[0]):
                    output._content["delayed_functions"][0][q] = self._content[
                        "delayed_functions"][0][q][key]
                for q in range(self._shape[1]):
                    output._content["delayed_functions"][1][q] = self._content[
                        "delayed_functions"][1][q]
                output._content[
                    "delayed_functions_shape"] = DelayedTransposeShape(
                        (output._content["delayed_functions"][0][0],
                         output._content["delayed_functions"][1][0]))
                self._precomputed_slices[slice_] = output
                return output
        elif self._type == "operators":
            assert "basis_functions" in self._content
            assert len(self._content["basis_functions"]) is 1
            assert "basis_functions_shape" in self._content

            slice_ = slice_to_array(
                self._content["basis_functions_shape"], key,
                self._content["basis_functions_shape"].
                _component_name_to_basis_component_length,
                self._content["basis_functions_shape"].
                _component_name_to_basis_component_index)

            if slice_ in self._precomputed_slices:
                return self._precomputed_slices[slice_]
            else:
                output = NonAffineExpansionStorage.__new__(
                    type(self), *self._shape)
                output.__init__(*self._shape)
                output._type = self._type
                output._content["truth_operators"] = self._content[
                    "truth_operators"]
                output._content[
                    "truth_operators_as_expansion_storage"] = self._content[
                        "truth_operators_as_expansion_storage"]
                output._content["basis_functions"] = list()
                output._content["basis_functions"].append(
                    self._content["basis_functions"][0][key])
                output._content[
                    "basis_functions_shape"] = DelayedTransposeShape(
                        output._content["basis_functions"])
                self._precomputed_slices[slice_] = output
                return output
        else:
            raise ValueError("Invalid type")

    @overload(
        tuple_of(slice), )
    def __getitem__(self, key):
        assert self._type in ("error_estimation_operators_22", "operators")
        if self._type == "error_estimation_operators_22":
            assert len(key) is 2
            assert "delayed_functions" in self._content
            assert len(self._content["delayed_functions"]) is 2
            assert "delayed_functions_shape" in self._content

            slice_ = slice_to_array(
                self._content["delayed_functions_shape"], key,
                self._content["delayed_functions_shape"].
                _component_name_to_basis_component_length,
                self._content["delayed_functions_shape"].
                _component_name_to_basis_component_index)

            if slice_ in self._precomputed_slices:
                return self._precomputed_slices[slice_]
            else:
                output = NonAffineExpansionStorage.__new__(
                    type(self), *self._shape)
                output.__init__(*self._shape)
                output._type = self._type
                output._content["inner_product_matrix"] = self._content[
                    "inner_product_matrix"]
                output._content["delayed_functions"] = [
                    NonAffineExpansionStorageContent_Base(self._shape[0],
                                                          dtype=object),
                    NonAffineExpansionStorageContent_Base(self._shape[1],
                                                          dtype=object)
                ]
                for q in range(self._shape[0]):
                    output._content["delayed_functions"][0][q] = self._content[
                        "delayed_functions"][0][q][key[0]]
                for q in range(self._shape[1]):
                    output._content["delayed_functions"][1][q] = self._content[
                        "delayed_functions"][1][q][key[1]]
                output._content[
                    "delayed_functions_shape"] = DelayedTransposeShape(
                        (output._content["delayed_functions"][0][0],
                         output._content["delayed_functions"][1][0]))
                self._precomputed_slices[slice_] = output
                return output
        elif self._type == "operators":
            assert len(key) is 2
            assert "basis_functions" in self._content
            assert len(self._content["basis_functions"]) is 2
            assert "basis_functions_shape" in self._content

            slices = slice_to_array(
                self._content["basis_functions_shape"], key,
                self._content["basis_functions_shape"].
                _component_name_to_basis_component_length,
                self._content["basis_functions_shape"].
                _component_name_to_basis_component_index)

            if slices in self._precomputed_slices:
                return self._precomputed_slices[slices]
            else:
                output = NonAffineExpansionStorage.__new__(
                    type(self), *self._shape)
                output.__init__(*self._shape)
                output._type = self._type
                output._content["truth_operators"] = self._content[
                    "truth_operators"]
                output._content[
                    "truth_operators_as_expansion_storage"] = self._content[
                        "truth_operators_as_expansion_storage"]
                output._content["basis_functions"] = list()
                output._content["basis_functions"].append(
                    self._content["basis_functions"][0][key[0]])
                output._content["basis_functions"].append(
                    self._content["basis_functions"][1][key[1]])
                output._content[
                    "basis_functions_shape"] = DelayedTransposeShape(
                        output._content["basis_functions"])
                self._precomputed_slices[slices] = output
                return output
        else:
            raise ValueError("Invalid type")

    @overload(
        int, )
    def __getitem__(self, key):
        assert self._type in ("basis_functions_matrix", "functions_list",
                              "operators")
        if self._type in ("basis_functions_matrix", "functions_list"):
            return self._content[self._type][key]
        elif self._type == "operators":
            return self._delay_transpose(self._content["basis_functions"],
                                         self._content["truth_operators"][key])
        else:
            raise ValueError("Invalid type")

    @overload(
        tuple_of(int), )
    def __getitem__(self, key):
        assert self._type in ("error_estimation_operators_11",
                              "error_estimation_operators_21",
                              "error_estimation_operators_22")
        return self._delay_transpose(
            (self._content["delayed_functions"][0][key[0]],
             self._content["delayed_functions"][1][key[1]]),
            self._content["inner_product_matrix"])

    def __iter__(self):
        assert self._type in ("basis_functions_matrix", "functions_list",
                              "operators")
        if self._type in ("basis_functions_matrix", "functions_list"):
            return self._content[self._type].__iter__()
        elif self._type == "operators":
            return (self._delay_transpose(self._content["basis_functions"], op)
                    for op in self._content["truth_operators"].__iter__())
        else:
            raise ValueError("Invalid type")

    @overload((int, tuple_of(int)), AbstractBasisFunctionsMatrix)
    def __setitem__(self, key, item):
        if self._type != "empty":
            assert self._type == "basis_functions_matrix"
        else:
            self._type = "basis_functions_matrix"
            self._content[self._type] = NonAffineExpansionStorageContent_Base(
                self._shape, dtype=object)
        self._content[self._type][key] = DelayedBasisFunctionsMatrix(
            item.space)
        self._content[self._type][key].init(item._components_name)

    @overload((int, tuple_of(int)), AbstractFunctionsList)
    def __setitem__(self, key, item):
        if self._type != "empty":
            assert self._type == "functions_list"
        else:
            self._type = "functions_list"
            self._content[self._type] = NonAffineExpansionStorageContent_Base(
                self._shape, dtype=object)
        self._content[self._type][key] = DelayedFunctionsList(item.space)

    @overload((int, tuple_of(int)), DelayedTranspose)
    def __setitem__(self, key, item):
        assert isinstance(item._args[0],
                          (AbstractBasisFunctionsMatrix,
                           DelayedBasisFunctionsMatrix, DelayedLinearSolver))
        if isinstance(item._args[0], AbstractBasisFunctionsMatrix):
            if self._type != "empty":
                assert self._type == "operators"
            else:
                self._type = "operators"
            # Reset attributes if size has changed
            if key == self._smallest_key:  # this assumes that __getitem__ is not random acces but called for increasing key
                self._content.pop("truth_operators_as_expansion_storage", None)
                self._content[
                    "truth_operators"] = NonAffineExpansionStorageContent_Base(
                        self._shape, dtype=object)
                self._content["basis_functions"] = list()
                self._content.pop("basis_functions_shape", None)
            # Store
            assert len(item._args) in (2, 3)
            if len(self._content["basis_functions"]) is 0:
                assert isinstance(item._args[0], AbstractBasisFunctionsMatrix)
                self._content["basis_functions"].append(item._args[0])
            else:
                assert item._args[0] is self._content["basis_functions"][0]
            self._content["truth_operators"][key] = item._args[1]
            if len(item._args) > 2:
                if len(self._content["basis_functions"]) is 1:
                    assert isinstance(item._args[2],
                                      AbstractBasisFunctionsMatrix)
                    self._content["basis_functions"].append(item._args[2])
                else:
                    assert item._args[2] is self._content["basis_functions"][1]
            # Recompute shape
            if "basis_functions_shape" not in self._content:
                self._content["basis_functions_shape"] = DelayedTransposeShape(
                    self._content["basis_functions"])
            # Compute truth expansion storage and prepare precomputed slices
            if key == self._largest_key:  # this assumes that __getitem__ is not random acces but called for increasing key
                self._prepare_truth_operators_as_expansion_storage()
                self._precomputed_slices.clear()
                self._prepare_trivial_precomputed_slice()
        elif isinstance(item._args[0],
                        (DelayedBasisFunctionsMatrix, DelayedLinearSolver)):
            assert len(item._args) is 3
            assert isinstance(
                item._args[2],
                (DelayedBasisFunctionsMatrix, DelayedLinearSolver))
            if isinstance(item._args[0], DelayedLinearSolver):
                assert isinstance(item._args[2], DelayedLinearSolver)
                if self._type != "empty":
                    assert self._type == "error_estimation_operators_11"
                else:
                    self._type = "error_estimation_operators_11"
            elif isinstance(item._args[0], DelayedBasisFunctionsMatrix):
                if isinstance(item._args[2], DelayedLinearSolver):
                    if self._type != "empty":
                        assert self._type == "error_estimation_operators_21"
                    else:
                        self._type = "error_estimation_operators_21"
                elif isinstance(item._args[2], DelayedBasisFunctionsMatrix):
                    if self._type != "empty":
                        assert self._type == "error_estimation_operators_22"
                    else:
                        self._type = "error_estimation_operators_22"
                else:
                    raise TypeError(
                        "Invalid arguments to NonAffineExpansionStorage")
            else:
                raise TypeError(
                    "Invalid arguments to NonAffineExpansionStorage")
            # Reset attributes if size has changed
            if key == self._smallest_key:  # this assumes that __getitem__ is not random acces but called for increasing key
                self._content["delayed_functions"] = [
                    NonAffineExpansionStorageContent_Base(self._shape[0],
                                                          dtype=object),
                    NonAffineExpansionStorageContent_Base(self._shape[1],
                                                          dtype=object)
                ]
                self._content.pop("delayed_functions_shape", None)
                self._content.pop("inner_product_matrix", None)
            # Store
            if key[1] == self._smallest_key[
                    1]:  # this assumes that __getitem__ is not random acces but called for increasing key
                self._content["delayed_functions"][0][key[0]] = item._args[0]
            else:
                assert item._args[0] is self._content["delayed_functions"][0][
                    key[0]]
            if "inner_product_matrix" not in self._content:
                self._content["inner_product_matrix"] = item._args[1]
            else:
                assert item._args[1] is self._content["inner_product_matrix"]
            if key[0] == self._smallest_key[
                    0]:  # this assumes that __getitem__ is not random acces but called for increasing key
                self._content["delayed_functions"][1][key[1]] = item._args[2]
            else:
                assert item._args[2] is self._content["delayed_functions"][1][
                    key[1]]
            # Recompute shape
            if "delayed_functions_shape" not in self._content:
                self._content[
                    "delayed_functions_shape"] = DelayedTransposeShape(
                        (item._args[0], item._args[2]))
            else:
                assert DelayedTransposeShape((
                    item._args[0],
                    item._args[2])) == self._content["delayed_functions_shape"]
            # Prepare precomputed slices
            if key == self._largest_key:  # this assumes that __getitem__ is not random acces but called for increasing key
                self._precomputed_slices.clear()
                self._prepare_trivial_precomputed_slice()
        else:
            raise TypeError("Invalid arguments to NonAffineExpansionStorage")

    @overload((int, tuple_of(int)),
              (AbstractParametrizedTensorFactory, Number))
    def __setitem__(self, key, item):
        if self._type != "empty":
            assert self._type == "operators"
        else:
            self._type = "operators"
        # Reset attributes, similarly to what is done for Vector and Matrix operators
        if key == self._smallest_key:  # this assumes that __getitem__ is not random acces but called for increasing key
            self._content.pop("truth_operators_as_expansion_storage", None)
            self._content[
                "truth_operators"] = NonAffineExpansionStorageContent_Base(
                    self._shape, dtype=object)
            self._content["basis_functions"] = list()  # will stay empty
            self._content.pop("basis_functions_shape", None)
        # Store
        if isinstance(item, Number):
            self._content["truth_operators"][key] = NumericForm(item)
        else:
            assert isinstance(item, AbstractParametrizedTensorFactory)
            assert len(item._spaces) is 0
            self._content["truth_operators"][key] = item
        # Recompute (trivial) shape
        if "basis_functions_shape" not in self._content:
            self._content["basis_functions_shape"] = DelayedTransposeShape(
                self._content["basis_functions"])
        # Compute truth expansion storage and prepare precomputed slices
        if key == self._largest_key:  # this assumes that __getitem__ is not random acces but called for increasing key
            self._prepare_truth_operators_as_expansion_storage()

    def _prepare_truth_operators_as_expansion_storage(self):
        from rbnics.backends import NonAffineExpansionStorage
        assert self._type == "operators"
        assert self.order() is 1
        extracted_operators = tuple(op._form
                                    for op in self._content["truth_operators"])
        assert "truth_operators_as_expansion_storage" not in self._content
        self._content[
            "truth_operators_as_expansion_storage"] = NonAffineExpansionStorage(
                extracted_operators)
        if not all(isinstance(op, Number) for op in extracted_operators):
            problems = [
                get_problem_from_parametrized_operator(op)
                for op in self._content["truth_operators"]
            ]
            assert all([problem is problems[0] for problem in problems])
            for extracted_operator in self._content[
                    "truth_operators_as_expansion_storage"]:
                add_to_map_from_parametrized_operator_to_problem(
                    extracted_operator, problems[0])

    def __len__(self):
        assert self._type == "operators"
        assert self.order() is 1
        return self._shape[0]

    def order(self):
        assert self._type in ("error_estimation_operators_11",
                              "error_estimation_operators_21",
                              "error_estimation_operators_22", "operators")
        return len(self._shape)

    def _delay_transpose(self, pre_post, op):
        assert len(pre_post) in (0, 1, 2)
        if len(pre_post) is 0:
            return op
        elif len(pre_post) is 1:
            return DelayedTranspose(pre_post[0]) * op
        else:
            return DelayedTranspose(pre_post[0]) * op * pre_post[1]
Пример #20
0
def get_function_subspace(function: Function,
                          component: (int, list_of(str), str, tuple_of(int))):
    return get_function_subspace(function.function_space(), component)
Пример #21
0
# This file is part of RBniCS.
#
# RBniCS is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# RBniCS is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with RBniCS. If not, see <http://www.gnu.org/licenses/>.
#

from ufl import Form
from rbnics.backends.basic import NonAffineExpansionStorage as BasicNonAffineExpansionStorage
from rbnics.backends.dolfin.parametrized_tensor_factory import ParametrizedTensorFactory
from rbnics.utils.decorators import BackendFor, ModuleWrapper, tuple_of

backend = ModuleWrapper(ParametrizedTensorFactory)
wrapping = ModuleWrapper()
NonAffineExpansionStorage_Base = BasicNonAffineExpansionStorage(
    backend, wrapping)


@BackendFor("dolfin", inputs=(tuple_of(Form), ))
class NonAffineExpansionStorage(NonAffineExpansionStorage_Base):
    pass
Пример #22
0
def get_mpi_comm(V: tuple_of(FunctionSpace)):
    assert len(V) in (1, 2)
    return get_mpi_comm(V[0])
Пример #23
0
def _sum(args: (list_of(Number), tuple_of(Number))):
    return python_sum(args)
Пример #24
0
# Copyright (C) 2015-2021 by the RBniCS authors
#
# This file is part of RBniCS.
#
# SPDX-License-Identifier: LGPL-3.0-or-later

from numbers import Number
from rbnics.backends.common.product import ProductOutput
from rbnics.utils.decorators import backend_for, list_of, overload, tuple_of
python_sum = sum


# product function to assemble truth/reduced affine expansions. To be used in combination with product,
# even though product actually carries out both the sum and the product!
@backend_for("common",
             inputs=((list_of(Number), ProductOutput, tuple_of(Number)), ))
def sum(args):
    return _sum(args)


@overload
def _sum(args: ProductOutput):
    return args.sum_product_return_value


@overload
def _sum(args: (list_of(Number), tuple_of(Number))):
    return python_sum(args)
Пример #25
0
    class _FunctionsList(AbstractFunctionsList):
        def __init__(self, space, component):
            if component is None:
                self.space = space
            else:
                self.space = wrapping.get_function_subspace(space, component)
            self.mpi_comm = wrapping.get_mpi_comm(space)
            self._list = list()  # of functions
            self._precomputed_slices = Cache()  # from tuple to FunctionsList

        def enrich(self, functions, component=None, weights=None, copy=True):
            # Append to storage
            self._enrich(functions, component, weights, copy)
            # Reset precomputed slices
            self._precomputed_slices = Cache()
            # Prepare trivial precomputed slice
            self._precomputed_slices[0, len(self._list)] = self

        @overload(backend.Function.Type(), (None, str, dict_of(str, str)),
                  (None, Number), bool)
        def _enrich(self, function, component, weight, copy):
            self._add_to_list(function, component, weight, copy)

        @overload((lambda cls: cls, list_of(
            backend.Function.Type()), tuple_of(backend.Function.Type())),
                  (None, str, dict_of(str, str)), (None, list_of(Number)),
                  bool)
        def _enrich(self, functions, component, weights, copy):
            if weights is not None:
                assert len(weights) == len(functions)
                for (index, function) in enumerate(functions):
                    self._add_to_list(function, component, weights[index],
                                      copy)
            else:
                for function in functions:
                    self._add_to_list(function, component, None, copy)

        @overload(TimeSeries, (None, str, dict_of(str, str)),
                  (None, list_of(Number)), bool)
        def _enrich(self, functions, component, weights, copy):
            self._enrich(functions._list, component, weights, copy)

        @overload(object, (None, str, dict_of(str, str)),
                  (None, Number, list_of(Number)), bool)
        def _enrich(self, function, component, weight, copy):
            if AdditionalIsFunction(function):
                function = ConvertAdditionalFunctionTypes(function)
                assert weight is None or isinstance(weight, Number)
                self._add_to_list(function, component, weight, copy)
            elif isinstance(function, list):
                converted_function = list()
                for function_i in function:
                    if AdditionalIsFunction(function_i):
                        converted_function.append(
                            ConvertAdditionalFunctionTypes(function_i))
                    else:
                        raise RuntimeError(
                            "Invalid function provided to FunctionsList.enrich()"
                        )
                assert weight is None or isinstance(weight, list)
                self._enrich(converted_function, component, weight, copy)
            else:
                raise RuntimeError(
                    "Invalid function provided to FunctionsList.enrich()")

        @overload(backend.Function.Type(), (None, str), (None, Number), bool)
        def _add_to_list(self, function, component, weight, copy):
            self._list.append(
                wrapping.function_extend_or_restrict(function, component,
                                                     self.space, component,
                                                     weight, copy))

        @overload(backend.Function.Type(), dict_of(str, str), (None, Number),
                  bool)
        def _add_to_list(self, function, component, weight, copy):
            assert len(component) == 1
            for (component_from, component_to) in component.items():
                break
            self._list.append(
                wrapping.function_extend_or_restrict(function, component_from,
                                                     self.space, component_to,
                                                     weight, copy))

        def clear(self):
            self._list = list()
            # Reset precomputed slices
            self._precomputed_slices.clear()

        def save(self, directory, filename):
            self._save_Nmax(directory, filename)
            for (index, function) in enumerate(self._list):
                wrapping.function_save(function, directory,
                                       filename + "_" + str(index))

        def _save_Nmax(self, directory, filename):
            def save_Nmax_task():
                with open(os.path.join(str(directory), filename + ".length"),
                          "w") as length:
                    length.write(str(len(self._list)))

            parallel_io(save_Nmax_task, self.mpi_comm)

        def load(self, directory, filename):
            if len(self._list) > 0:  # avoid loading multiple times
                return False
            Nmax = self._load_Nmax(directory, filename)
            for index in range(Nmax):
                function = backend.Function(self.space)
                wrapping.function_load(function, directory,
                                       filename + "_" + str(index))
                self.enrich(function)
            return True

        def _load_Nmax(self, directory, filename):
            def load_Nmax_task():
                with open(os.path.join(str(directory), filename + ".length"),
                          "r") as length:
                    return int(length.readline())

            return parallel_io(load_Nmax_task, self.mpi_comm)

        @overload(
            online_backend.OnlineMatrix.Type(), )
        def __mul__(self, other):
            return wrapping.functions_list_mul_online_matrix(
                self, other, type(self))

        @overload(
            (online_backend.OnlineVector.Type(), ThetaType), )
        def __mul__(self, other):
            return wrapping.functions_list_mul_online_vector(self, other)

        @overload(
            online_backend.OnlineFunction.Type(), )
        def __mul__(self, other):
            return wrapping.functions_list_mul_online_vector(
                self, online_wrapping.function_to_vector(other))

        def __len__(self):
            return len(self._list)

        @overload(int)
        def __getitem__(self, key):
            return self._list[key]

        @overload(slice)  # e.g. key = :N, return the first N functions
        def __getitem__(self, key):
            if key.start is not None:
                start = key.start
            else:
                start = 0
            assert key.step is None
            if key.stop is not None:
                stop = key.stop
            else:
                stop = len(self._list)

            assert start <= stop
            if start < stop:
                assert start >= 0
                assert start < len(self._list)
                assert stop > 0
                assert stop <= len(self._list)
            # elif start == stop
            #    trivial case which will result in an empty FunctionsList

            if (start, stop) not in self._precomputed_slices:
                output = _FunctionsList.__new__(type(self), self.space)
                output.__init__(self.space)
                if start < stop:
                    output._list = self._list[key]
                self._precomputed_slices[start, stop] = output
            return self._precomputed_slices[start, stop]

        @overload(int, backend.Function.Type())
        def __setitem__(self, key, item):
            self._list[key] = item

        @overload(int, object)
        def __setitem__(self, key, item):
            if AdditionalIsFunction(item):
                item = ConvertAdditionalFunctionTypes(item)
                self._list[key] = item
            else:
                raise RuntimeError(
                    "Invalid function provided to FunctionsList.__setitem__()")

        def __iter__(self):
            return self._list.__iter__()
Пример #26
0
    class _AffineExpansionStorage(AbstractAffineExpansionStorage):
        def __init__(self, arg1, arg2):
            self._content = None
            self._precomputed_slices = Cache(
            )  # from tuple to AffineExpansionStorage
            self._smallest_key = None
            self._previous_key = None
            self._largest_key = None
            # Auxiliary storage for __getitem__ slicing
            self._component_name_to_basis_component_index = None  # will be filled in in __setitem__, if required
            self._component_name_to_basis_component_length = None  # will be filled in in __setitem__, if required
            # Initialize arguments from inputs
            self._init(arg1, arg2)

        @overload(
            (tuple_of(backend.Matrix.Type()), tuple_of(backend.Vector.Type())),
            None)
        def _init(self, arg1, arg2):
            self._content = AffineExpansionStorageContent_Base((len(arg1), ),
                                                               dtype=object)
            self._smallest_key = 0
            self._largest_key = len(arg1) - 1
            for (i, arg1i) in enumerate(arg1):
                self[i] = arg1i

        @overload(int, None)
        def _init(self, arg1, arg2):
            self._content = AffineExpansionStorageContent_Base((arg1, ),
                                                               dtype=object)
            self._smallest_key = 0
            self._largest_key = arg1 - 1

        @overload(int, int)
        def _init(self, arg1, arg2):
            self._content = AffineExpansionStorageContent_Base((arg1, arg2),
                                                               dtype=object)
            self._smallest_key = (0, 0)
            self._largest_key = (arg1 - 1, arg2 - 1)

        def save(self, directory, filename):
            # Get full directory name
            full_directory = Folders.Folder(
                os.path.join(str(directory), filename))
            full_directory.create()
            # Exit in the trivial case of empty affine expansion
            if self._content.size is 0:
                return
            # Initialize iterator
            it = AffineExpansionStorageContent_Iterator(
                self._content,
                flags=["c_index", "multi_index", "refs_ok"],
                op_flags=["readonly"])
            # Save content item type and shape
            self._save_content_item_type_shape(self._content[it.multi_index],
                                               it, full_directory)
            # Save content
            self._save_content(self._content[it.multi_index], it,
                               full_directory)
            # Save dicts
            self._save_dicts(full_directory)

        @overload(backend.Matrix.Type(),
                  AffineExpansionStorageContent_Iterator, Folders.Folder)
        def _save_content_item_type_shape(self, item, it, full_directory):
            ContentItemTypeIO.save_file("matrix", full_directory,
                                        "content_item_type")
            ContentItemShapeIO.save_file((item.M, item.N), full_directory,
                                         "content_item_shape")

        @overload(backend.Vector.Type(),
                  AffineExpansionStorageContent_Iterator, Folders.Folder)
        def _save_content_item_type_shape(self, item, it, full_directory):
            ContentItemTypeIO.save_file("vector", full_directory,
                                        "content_item_type")
            ContentItemShapeIO.save_file(item.N, full_directory,
                                         "content_item_shape")

        @overload(backend.Function.Type(),
                  AffineExpansionStorageContent_Iterator, Folders.Folder)
        def _save_content_item_type_shape(self, item, it, full_directory):
            ContentItemTypeIO.save_file("function", full_directory,
                                        "content_item_type")
            ContentItemShapeIO.save_file(item.N, full_directory,
                                         "content_item_shape")

        @overload(Number, AffineExpansionStorageContent_Iterator,
                  Folders.Folder)
        def _save_content_item_type_shape(self, item, it, full_directory):
            ContentItemTypeIO.save_file("scalar", full_directory,
                                        "content_item_type")
            ContentItemShapeIO.save_file(None, full_directory,
                                         "content_item_shape")

        @overload(AbstractFunctionsList,
                  AffineExpansionStorageContent_Iterator, Folders.Folder)
        def _save_content_item_type_shape(self, item, it, full_directory):
            ContentItemTypeIO.save_file("functions_list", full_directory,
                                        "content_item_type")
            ContentItemShapeIO.save_file(None, full_directory,
                                         "content_item_shape")

        @overload(AbstractBasisFunctionsMatrix,
                  AffineExpansionStorageContent_Iterator, Folders.Folder)
        def _save_content_item_type_shape(self, item, it, full_directory):
            ContentItemTypeIO.save_file("basis_functions_matrix",
                                        full_directory, "content_item_type")
            ContentItemShapeIO.save_file(None, full_directory,
                                         "content_item_shape")

        @overload(None, AffineExpansionStorageContent_Iterator, Folders.Folder)
        def _save_content_item_type_shape(self, item, it, full_directory):
            ContentItemTypeIO.save_file("empty", full_directory,
                                        "content_item_type")
            ContentItemShapeIO.save_file(None, full_directory,
                                         "content_item_shape")

        @overload(backend.Matrix.Type(),
                  AffineExpansionStorageContent_Iterator, Folders.Folder)
        def _save_content(self, item, it, full_directory):
            while not it.finished:
                wrapping.tensor_save(self._content[it.multi_index],
                                     full_directory,
                                     "content_item_" + str(it.index))
                it.iternext()

        @overload(backend.Vector.Type(),
                  AffineExpansionStorageContent_Iterator, Folders.Folder)
        def _save_content(self, item, it, full_directory):
            while not it.finished:
                wrapping.tensor_save(self._content[it.multi_index],
                                     full_directory,
                                     "content_item_" + str(it.index))
                it.iternext()

        @overload(backend.Function.Type(),
                  AffineExpansionStorageContent_Iterator, Folders.Folder)
        def _save_content(self, item, it, full_directory):
            while not it.finished:
                wrapping.function_save(self._content[it.multi_index],
                                       full_directory,
                                       "content_item_" + str(it.index))
                it.iternext()

        @overload(Number, AffineExpansionStorageContent_Iterator,
                  Folders.Folder)
        def _save_content(self, item, it, full_directory):
            while not it.finished:
                ScalarContentIO.save_file(self._content[it.multi_index],
                                          full_directory,
                                          "content_item_" + str(it.index))
                it.iternext()

        @overload(AbstractFunctionsList,
                  AffineExpansionStorageContent_Iterator, Folders.Folder)
        def _save_content(self, item, it, full_directory):
            while not it.finished:
                self._content[it.multi_index].save(
                    full_directory, "content_item_" + str(it.index))
                it.iternext()

        @overload(AbstractBasisFunctionsMatrix,
                  AffineExpansionStorageContent_Iterator, Folders.Folder)
        def _save_content(self, item, it, full_directory):
            while not it.finished:
                self._content[it.multi_index].save(
                    full_directory, "content_item_" + str(it.index))
                it.iternext()

        @overload(None, AffineExpansionStorageContent_Iterator, Folders.Folder)
        def _save_content(self, item, it, full_directory):
            pass

        def _save_dicts(self, full_directory):
            DictIO.save_file(self._component_name_to_basis_component_index,
                             full_directory,
                             "component_name_to_basis_component_index")
            DictIO.save_file(self._component_name_to_basis_component_length,
                             full_directory,
                             "component_name_to_basis_component_length")

        def load(self, directory, filename):
            if self._content is not None:  # avoid loading multiple times
                if self._content.size > 0:
                    it = AffineExpansionStorageContent_Iterator(
                        self._content,
                        flags=["multi_index", "refs_ok"],
                        op_flags=["readonly"])
                    while not it.finished:
                        if self._content[
                                it.
                                multi_index] is not None:  # ... but only if there is at least one element different from None
                            if isinstance(self._content[it.multi_index],
                                          AbstractFunctionsList):
                                if len(
                                        self._content[it.multi_index]
                                ) > 0:  # ... unless it is an empty FunctionsList
                                    return False
                            elif isinstance(self._content[it.multi_index],
                                            AbstractBasisFunctionsMatrix):
                                if sum(
                                        self._content[it.multi_index].
                                        _component_name_to_basis_component_length
                                        .values()
                                ) > 0:  # ... unless it is an empty BasisFunctionsMatrix
                                    return False
                            else:
                                return False
                        it.iternext()
            # Get full directory name
            full_directory = Folders.Folder(
                os.path.join(str(directory), filename))
            # Exit in the trivial case of empty affine expansion
            if self._content.size is 0:
                return True
            # Load content item type and shape
            reference_item = self._load_content_item_type_shape(full_directory)
            # Initialize iterator
            it = AffineExpansionStorageContent_Iterator(
                self._content, flags=["c_index", "multi_index", "refs_ok"])
            # Load content
            self._load_content(reference_item, it, full_directory)
            # Load dicts
            self._load_dicts(full_directory)
            # Reset precomputed slices
            self._precomputed_slices.clear()
            self._prepare_trivial_precomputed_slice(reference_item)
            # Return
            return True

        def _load_content_item_type_shape(self, full_directory):
            assert ContentItemTypeIO.exists_file(full_directory,
                                                 "content_item_type")
            content_item_type = ContentItemTypeIO.load_file(
                full_directory, "content_item_type")
            assert ContentItemShapeIO.exists_file(full_directory,
                                                  "content_item_shape")
            assert content_item_type in ("matrix", "vector", "function",
                                         "scalar", "functions_list",
                                         "basis_functions_matrix", "empty")
            if content_item_type == "matrix":
                (M, N) = ContentItemShapeIO.load_file(
                    full_directory,
                    "content_item_shape",
                    globals={"OnlineSizeDict": OnlineSizeDict})
                return backend.Matrix(M, N)
            elif content_item_type == "vector":
                N = ContentItemShapeIO.load_file(
                    full_directory,
                    "content_item_shape",
                    globals={"OnlineSizeDict": OnlineSizeDict})
                return backend.Vector(N)
            elif content_item_type == "function":
                N = ContentItemShapeIO.load_file(
                    full_directory,
                    "content_item_shape",
                    globals={"OnlineSizeDict": OnlineSizeDict})
                return backend.Function(N)
            elif content_item_type == "scalar":
                return 0.
            elif content_item_type == "functions_list":  # self._content has already been populated with empty items
                assert isinstance(self._content[self._smallest_key],
                                  AbstractFunctionsList)
                return self._content[self._smallest_key]
            elif content_item_type == "basis_functions_matrix":  # self._content has already been populated with empty items
                assert isinstance(self._content[self._smallest_key],
                                  AbstractBasisFunctionsMatrix)
                return self._content[self._smallest_key]
            elif content_item_type == "empty":
                return None
            else:  # impossible to arrive here anyway thanks to the assert
                raise ValueError("Invalid content item type.")

        @overload(backend.Matrix.Type(),
                  AffineExpansionStorageContent_Iterator, Folders.Folder)
        def _load_content(self, item, it, full_directory):
            while not it.finished:
                self._content[it.multi_index] = wrapping.tensor_copy(item)
                wrapping.tensor_load(self._content[it.multi_index],
                                     full_directory,
                                     "content_item_" + str(it.index))
                it.iternext()

        @overload(backend.Vector.Type(),
                  AffineExpansionStorageContent_Iterator, Folders.Folder)
        def _load_content(self, item, it, full_directory):
            while not it.finished:
                self._content[it.multi_index] = wrapping.tensor_copy(item)
                wrapping.tensor_load(self._content[it.multi_index],
                                     full_directory,
                                     "content_item_" + str(it.index))
                it.iternext()

        @overload(backend.Function.Type(),
                  AffineExpansionStorageContent_Iterator, Folders.Folder)
        def _load_content(self, item, it, full_directory):
            while not it.finished:
                self._content[it.multi_index] = wrapping.function_copy(item)
                wrapping.function_load(self._content[it.multi_index],
                                       full_directory,
                                       "content_item_" + str(it.index))
                it.iternext()

        @overload(Number, AffineExpansionStorageContent_Iterator,
                  Folders.Folder)
        def _load_content(self, item, it, full_directory):
            while not it.finished:
                self._content[it.multi_index] = ScalarContentIO.load_file(
                    full_directory, "content_item_" + str(it.index))
                it.iternext()

        @overload(AbstractFunctionsList,
                  AffineExpansionStorageContent_Iterator, Folders.Folder)
        def _load_content(self, item, it, full_directory):
            while not it.finished:
                self._content[it.multi_index].load(
                    full_directory, "content_item_" + str(it.index))
                it.iternext()

        @overload(AbstractBasisFunctionsMatrix,
                  AffineExpansionStorageContent_Iterator, Folders.Folder)
        def _load_content(self, item, it, full_directory):
            while not it.finished:
                self._content[it.multi_index].load(
                    full_directory, "content_item_" + str(it.index))
                it.iternext()

        @overload(None, AffineExpansionStorageContent_Iterator, Folders.Folder)
        def _load_content(self, item, it, full_directory):
            pass

        def _load_dicts(self, full_directory):
            assert DictIO.exists_file(
                full_directory, "component_name_to_basis_component_index")
            self._component_name_to_basis_component_index = DictIO.load_file(
                full_directory,
                "component_name_to_basis_component_index",
                globals={
                    "ComponentNameToBasisComponentIndexDict":
                    ComponentNameToBasisComponentIndexDict
                })
            assert DictIO.exists_file(
                full_directory, "component_name_to_basis_component_length")
            self._component_name_to_basis_component_length = DictIO.load_file(
                full_directory,
                "component_name_to_basis_component_length",
                globals={"OnlineSizeDict": OnlineSizeDict})
            it = AffineExpansionStorageContent_Iterator(
                self._content,
                flags=["multi_index", "refs_ok"],
                op_flags=["readonly"])
            while not it.finished:
                if self._component_name_to_basis_component_index is not None:
                    self._content[
                        it.
                        multi_index]._component_name_to_basis_component_index = self._component_name_to_basis_component_index
                if self._component_name_to_basis_component_length is not None:
                    self._content[
                        it.
                        multi_index]._component_name_to_basis_component_length = self._component_name_to_basis_component_length
                it.iternext()

        @overload(
            backend.Matrix.Type(), )
        def _prepare_trivial_precomputed_slice(self, item):
            empty_slice = slice(None)
            slices = slice_to_array(
                item, (empty_slice, empty_slice),
                self._component_name_to_basis_component_length,
                self._component_name_to_basis_component_index)
            self._precomputed_slices[slices] = self

        @overload(
            backend.Vector.Type(), )
        def _prepare_trivial_precomputed_slice(self, item):
            empty_slice = slice(None)
            slices = slice_to_array(
                item, empty_slice,
                self._component_name_to_basis_component_length,
                self._component_name_to_basis_component_index)
            self._precomputed_slices[slices] = self

        @overload(
            backend.Function.Type(), )
        def _prepare_trivial_precomputed_slice(self, item):
            empty_slice = slice(None)
            slices = slice_to_array(
                item.vector, empty_slice,
                self._component_name_to_basis_component_length,
                self._component_name_to_basis_component_index)
            self._precomputed_slices[slices] = self

        @overload(
            Number, )
        def _prepare_trivial_precomputed_slice(self, item):
            pass

        @overload(
            AbstractFunctionsList, )
        def _prepare_trivial_precomputed_slice(self, item):
            pass

        @overload(
            AbstractBasisFunctionsMatrix, )
        def _prepare_trivial_precomputed_slice(self, item):
            pass

        @overload(
            None, )
        def _prepare_trivial_precomputed_slice(self, item):
            pass

        @overload(
            (slice, tuple_of(slice)), )
        def __getitem__(self, key):
            """
            return the subtensors of size "key" for every element in content. (e.g. submatrices [1:5,1:5] of the affine expansion of A)
            """
            it = AffineExpansionStorageContent_Iterator(
                self._content,
                flags=["multi_index", "refs_ok"],
                op_flags=["readonly"])
            slices = slice_to_array(
                self._content[it.multi_index], key,
                self._component_name_to_basis_component_length,
                self._component_name_to_basis_component_index)

            if slices in self._precomputed_slices:
                return self._precomputed_slices[slices]
            else:
                output = _AffineExpansionStorage.__new__(
                    type(self), *self._content.shape)
                output.__init__(*self._content.shape)
                while not it.finished:
                    # Slice content and assign
                    output[it.multi_index] = self._do_slicing(
                        self._content[it.multi_index], key)
                    # Increment
                    it.iternext()
                self._precomputed_slices[slices] = output
                return output

        @overload(
            (int, tuple_of(int)), )
        def __getitem__(self, key):
            """
            return the element at position "key" in the storage (e.g. q-th matrix in the affine expansion of A, q = 1 ... Qa)
            """
            return self._content[key]

        @overload(backend.Matrix.Type(), (slice, tuple_of(slice)))
        def _do_slicing(self, item, key):
            return item[key]

        @overload(backend.Vector.Type(), (slice, tuple_of(slice)))
        def _do_slicing(self, item, key):
            return item[key]

        @overload(backend.Function.Type(), (slice, tuple_of(slice)))
        def _do_slicing(self, item, key):
            return backend.Function(item.vector()[key])

        def __setitem__(self, key, item):
            assert not isinstance(
                key, slice
            )  # only able to set the element at position "key" in the storage
            # Check that __getitem__ is not random acces but called for increasing key and store current key
            self._assert_setitem_order(key)
            self._update_previous_key(key)
            # Store item
            self._content[key] = item
            # Reset attributes related to basis functions matrix if the size has changed
            if key == self._smallest_key:  # this assumes that __getitem__ is not random acces but called for increasing key
                self._component_name_to_basis_component_index = None
                self._component_name_to_basis_component_length = None
            # Also store attributes related to basis functions matrix for __getitem__ slicing
            assert isinstance(
                item,
                (
                    backend.Matrix.Type(),  # output e.g. of Z^T*A*Z
                    backend.Vector.Type(),  # output e.g. of Z^T*F
                    backend.Function.Type(
                    ),  # for initial conditions of unsteady problems
                    Number,  # output of Riesz_F^T*X*Riesz_F
                    AbstractFunctionsList,  # auxiliary storage of Riesz representors
                    AbstractBasisFunctionsMatrix  # auxiliary storage of Riesz representors
                ))
            if isinstance(item, backend.Function.Type()):
                item = item.vector()
            if isinstance(item, (backend.Matrix.Type(), backend.Vector.Type(),
                                 AbstractBasisFunctionsMatrix)):
                assert (
                    self._component_name_to_basis_component_index is None) == (
                        self._component_name_to_basis_component_length is None)
                if self._component_name_to_basis_component_index is None:
                    self._component_name_to_basis_component_index = item._component_name_to_basis_component_index
                    self._component_name_to_basis_component_length = item._component_name_to_basis_component_length
                else:
                    assert self._component_name_to_basis_component_index == item._component_name_to_basis_component_index
                    assert self._component_name_to_basis_component_length == item._component_name_to_basis_component_length
            else:
                assert self._component_name_to_basis_component_index is None
                assert self._component_name_to_basis_component_length is None
            # Reset and prepare precomputed slices
            if key == self._largest_key:  # this assumes that __getitem__ is not random acces but called for increasing key
                self._precomputed_slices.clear()
                self._prepare_trivial_precomputed_slice(item)

        @overload(int)
        def _assert_setitem_order(self, current_key):
            if self._previous_key is None:
                assert current_key == 0
            else:
                assert current_key == (self._previous_key +
                                       1) % (self._largest_key + 1)

        @overload(int, int)
        def _assert_setitem_order(self, current_key_0, current_key_1):
            if self._previous_key is None:
                assert current_key_0 == 0
                assert current_key_1 == 0
            else:
                expected_key_1 = (self._previous_key[1] +
                                  1) % (self._largest_key[1] + 1)
                if expected_key_1 is 0:
                    expected_key_0 = (self._previous_key[0] +
                                      1) % (self._largest_key[0] + 1)
                else:
                    expected_key_0 = self._previous_key[0]
                assert current_key_0 == expected_key_0
                assert current_key_1 == expected_key_1

        @overload(tuple_of(int))
        def _assert_setitem_order(self, current_key):
            self._assert_setitem_order(*current_key)

        @overload(int)
        def _update_previous_key(self, current_key):
            self._previous_key = current_key

        @overload(int, int)
        def _update_previous_key(self, current_key_0, current_key_1):
            self._previous_key = (current_key_0, current_key_1)

        @overload(tuple_of(int))
        def _update_previous_key(self, current_key):
            self._update_previous_key(*current_key)

        def __iter__(self):
            return AffineExpansionStorageContent_Iterator(
                self._content, flags=["refs_ok"], op_flags=["readonly"])

        def __len__(self):
            assert self.order() == 1
            return self._content.size

        def order(self):
            assert self._content is not None
            return len(self._content.shape)
Пример #27
0
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with RBniCS. If not, see <http://www.gnu.org/licenses/>.
#

from rbnics.backends.online.basic import AffineExpansionStorage as BasicAffineExpansionStorage
from rbnics.backends.online.numpy.copy import function_copy, tensor_copy
from rbnics.backends.online.numpy.function import Function
from rbnics.backends.online.numpy.matrix import Matrix
from rbnics.backends.online.numpy.vector import Vector
from rbnics.backends.online.numpy.wrapping import function_load, function_save, tensor_load, tensor_save
from rbnics.utils.decorators import BackendFor, ModuleWrapper, tuple_of

backend = ModuleWrapper(Function, Matrix, Vector)
wrapping = ModuleWrapper(function_load,
                         function_save,
                         tensor_load,
                         tensor_save,
                         function_copy=function_copy,
                         tensor_copy=tensor_copy)
AffineExpansionStorage_Base = BasicAffineExpansionStorage(backend, wrapping)


@BackendFor("numpy",
            inputs=((int, tuple_of(Matrix.Type()), tuple_of(Vector.Type())),
                    (int, None)))
class AffineExpansionStorage(AffineExpansionStorage_Base):
    def __init__(self, arg1, arg2=None):
        AffineExpansionStorage_Base.__init__(self, arg1, arg2)
Пример #28
0
def get_function_subspace(function_space: FunctionSpace,
                          component: tuple_of(int)):
    return function_space.extract_sub_space(component).collapse()
Пример #29
0
# SPDX-License-Identifier: LGPL-3.0-or-later

# from rbnics.backends.online.basic import evaluate as basic_evaluate
# from rbnics.backends.online.numpy.function import Function
from rbnics.backends.online.numpy.matrix import Matrix
# from rbnics.backends.online.numpy.parametrized_expression_factory import ParametrizedExpressionFactory
# from rbnics.backends.online.numpy.parametrized_tensor_factory import ParametrizedTensorFactory
# from rbnics.backends.online.numpy.reduced_mesh import ReducedMesh
# from rbnics.backends.online.numpy.reduced_vertices import ReducedVertices
# from rbnics.backends.online.numpy.tensors_list import TensorsList
from rbnics.backends.online.numpy.vector import Vector
from rbnics.utils.decorators import backend_for, tuple_of

# backend = ModuleWrapper(Function, FunctionsList, Matrix, ParametrizedExpressionFactory, ParametrizedTensorFactory,
#                         ReducedMesh, ReducedVertices, TensorsList, Vector)
# wrapping = ModuleWrapper(evaluate_and_vectorize_sparse_matrix_at_dofs, evaluate_sparse_function_at_dofs,
#                          evaluate_sparse_vector_at_dofs, expression_on_reduced_mesh, expression_on_truth_mesh,
#                          form_on_reduced_function_space, form_on_truth_function_space)
# online_backend = ModuleWrapper(OnlineFunction=Function, OnlineMatrix=Matrix, OnlineVector=Vector)
# online_wrapping = ModuleWrapper()
# evaluate_base = basic_evaluate(backend, wrapping, online_backend, online_wrapping)
evaluate_base = None  # TODO


# Evaluate a parametrized expression, possibly at a specific location
@backend_for("numpy",
             inputs=((Matrix.Type(), Vector.Type()),
                     (tuple_of(int), tuple_of(tuple_of(int)), None)))
def evaluate(expression, at=None):
    return evaluate_base(expression, at)
# Copyright (C) 2015-2020 by the RBniCS authors
#
# This file is part of RBniCS.
#
# SPDX-License-Identifier: LGPL-3.0-or-later

from rbnics.backends.online.basic import NonAffineExpansionStorage as BasicNonAffineExpansionStorage
from rbnics.backends.online.numpy.matrix import Matrix
from rbnics.backends.online.numpy.vector import Vector
from rbnics.utils.decorators import BackendFor, tuple_of

NonAffineExpansionStorage_Base = BasicNonAffineExpansionStorage


@BackendFor("numpy", inputs=((int, tuple_of(Matrix.Type()), tuple_of(Vector.Type())), (int, None)))
class NonAffineExpansionStorage(NonAffineExpansionStorage_Base):
    pass