Пример #1
0
def test_embed_r_groups__ROR(bax_mol):
    fragment = MolFromMolBlock('''
RDKit          3D

  3  2  0  0  0  0  0  0  0  0999 V2000
    0.0000    0.0000    0.0000 R   0  0  0  0  0  1  0  0  0  0  0  0
    4.4640    1.0880   19.5620 O   0  0  0  0  0  0  0  0  0  0  0  0
    0.0000    0.0000    0.0000 R   0  0  0  0  0  1  0  0  0  0  0  0
  1  2  1  0
  3  2  1  0
M  END
    ''')
    embed_r_groups(fragment, bax_mol)

    expected = '''
     RDKit          3D

  3  2  0  0  0  0  0  0  0  0999 V2000
    3.7070    1.4910   20.6340 R   0  0  0  0  0  1  0  0  0  0  0  0
    4.4640    1.0880   19.5620 O   0  0  0  0  0  0  0  0  0  0  0  0
    4.1550    0.2360   18.5580 R   0  0  0  0  0  1  0  0  0  0  0  0
  1  2  1  0
  3  2  1  0
M  END
'''
    assert MolToMolBlock(fragment) == expected
Пример #2
0
def adapt_molblockgz(mol):
    """Convert RDKit molecule to compressed molblock

    Args:
        mol (rdkit.Chem.Mol): molecule

    Returns:
        str: Compressed molblock
    """
    molblock = MolToMolBlock(mol).encode()
    return zlib.compress(molblock)
Пример #3
0
 def __compound_to_dir__(compound):
     compounds_dir = __mkd__(f'{compound["Compound Id"]}')
     with open('smiles', 'w') as f:
         f.write(compound["smiles"])
     with open('molfile', 'w') as f:
         mol = MolFromSmiles(compound["smiles"])
         f.write(MolToMolBlock(mol))
     os.chdir(compounds_dir)
     comp = ET.SubElement(root, "Compound")
     ET.SubElement(comp, "Id").text = compound["Compound Id"]
     ET.SubElement(comp, "Cargos").text = "smiles molfile"
Пример #4
0
def _parseMolData(data):
    suppl = SDMolSupplier()

    suppl.SetData(str(data), sanitize=False)
    data = [x for x in suppl if x]
    for x in data:
        if not x.HasProp("_drawingBondsWedged"):
            SanitizeMol(x)
        ctab = MolToMolBlock(x)
        ctablines = [item.split("0.0000") for item in ctab.split("\n") if "0.0000" in item]
        needs_redraw = 0
        for line in ctablines:
            if len(line) > 3:
                needs_redraw +=1
        if needs_redraw == len(ctablines):
             #check for overlapping molecules in the CTAB 
            SanitizeMol(x)
            Compute2DCoords(x)
            print "testr"
    return data
Пример #5
0
    def test0InchiWritePubChem(self):
        for fp, f in self.dataset.items():
            inchi_db = self.dataset_inchi[fp]
            same, diff, reasonable = 0, 0, 0
            for m in f:
                if m is None:  # pragma: nocover
                    continue
                ref_inchi = inchi_db[m.GetProp('PUBCHEM_COMPOUND_CID')]
                x, y = MolToInchi(m), ref_inchi
                if x != y:
                    # print("---------------")
                    # print(m.GetProp('PUBCHEM_COMPOUND_CID'))
                    # print(MolToSmiles(m))
                    # print(y)
                    # print(x)
                    if re.search(r'.[1-9]?ClO4', x) is not None:
                        reasonable += 1
                        continue
                    SanitizeMol(m)
                    if filter(lambda i: i >= 8,
                              [len(r) for r in m.GetRingInfo().AtomRings()]):
                        reasonable += 1
                        continue
                    # THERE ARE NO EXAMPLES FOR THE FOLLOWING (no coverage)
                    # if it is because RDKit does not think the bond is stereo
                    z = MolToInchi(MolFromMolBlock(MolToMolBlock(m)))
                    if y != z and inchiDiffPrefix(y, z) == 'b':
                        reasonable += 1
                        continue
                    # some warning
                    try:
                        MolToInchi(m, treatWarningAsError=True)
                    except InchiReadWriteError as inst:
                        _, error = inst.args
                        if 'Metal' in error:
                            reasonable += 1
                            continue

                    diff += 1
                    print('InChI mismatch for PubChem Compound ' +
                          m.GetProp('PUBCHEM_COMPOUND_CID'))
                    print(MolToSmiles(m, True))
                    print(inchiDiff(x, y))
                    print()

                else:
                    same += 1

            fmt = "\n{0}InChI write Summary: {1} identical, {2} suffix variance, {3} reasonable{4}"
            print(fmt.format(COLOR_GREEN, same, diff, reasonable, COLOR_RESET))
            self.assertEqual(same, 1162)
            self.assertEqual(diff, 0)
            self.assertEqual(reasonable, 19)
def calculate_coords(apps, schema_editor):
    # We can't import the Person model directly as it may be a newer
    # version than this migration expects. We use the historical version.
    Batch = apps.get_model("cbh_chembl_model_extension", "CBHCompoundBatch")
    for field in Batch.objects.all():
        mol = MolFromMolBlock(field.ctab)
        AllChem.Compute2DCoords(mol)
        try:
            field.ctab = MolToMolBlock(mol, includeStereo=True)
        except:
            print "test"
        field.save()
Пример #7
0
def processline(t, step, line):
    global lensum
    if t.incr():
        return 1
    if step == 0:
        lensum += len(line)
    else:
        m = MolFromSmiles(line)
        if step == 100:
            lensum += len(line)
        elif step == 105:
            lensum += len(sha256(line).hexdigest())
        elif step in (110, 120):
            with open(tmpname, 'wb+') as f:
                print(line, file=f)
                if step == 120:
                    os.fsync(f.fileno())
            lensum += os.stat(tmpname).st_size
        elif step == 210:
            lensum += m.GetNumAtoms()
        elif step == 220:
            lensum += m.GetNumBonds()
        elif step == 300:
            lensum += len(MolToSmiles(m))
        elif step == 400:
            lensum += len(MolToMolBlock(m))
        elif step == 420:
            m2 = AddHs(m)
            EmbedMolecule(m2, randomSeed=2020)
            m2 = RemoveHs(m2)
            m2.SetProp("_Name", "test")
            lensum += len(MolToMolBlock(m2))
        elif step == 600:
            lensum += mol2file(m, 'svg')
        elif step == 610:
            lensum += mol2file(m, 'png')
        else:
            raise ValueError("Not implemented step " + str(step))

    return 0
Пример #8
0
def generate_smiles(mol, logfile=devnull):
    with stdout_redirected(to=logfile, stdout=sys.stderr):
        with stdout_redirected(to=logfile, stdout=sys.stdout):
            mol2 = Mol(mol)
            mol2.SetProp("_Name", "")
            molblock = MolToMolBlock(mol2, includeStereo=True)
            del mol2

    smi, smierr = generate_smiles_openbabel(molblock)
    if isinstance(logfile, str):
        with open(logfile, 'a') as to_file:
            print(smierr, file=to_file)
    else:
        print(smierr, file=logfile)
    return smi
Пример #9
0
def protonate_molecule(mol_in: Mol, ph=7.4) -> Mol:
    molblock_in = MolToMolBlock(mol_in)
    babel_mol = pybel.readstring('mol', molblock_in)
    babel_mol.OBMol.AddHydrogens(False, True, ph)
    molblock_out = babel_mol.write('mol')
    mol = MolFromMolBlock(molblock_out, removeHs=False, sanitize=False)
    try:
        SanitizeMol(mol)
    except ValueError:
        # Try again, but without ph correction
        babel_mol = pybel.readstring('mol', molblock_in)
        babel_mol.OBMol.AddHydrogens(False, False)
        molblock_out = babel_mol.write('mol')
        mol = MolFromMolBlock(molblock_out, removeHs=False, sanitize=False)
        SanitizeMol(mol)
    return mol
Пример #10
0
def dump_conformers_sdf(mol, output, conf_ids=None, 
                                     energies=None, 
                                     renumber=True):
    if conf_ids is None:
        conformers = mol.GetConformers()
    else:
        conformers = (mol.GetConformer(conf_id) for conf_id in conf_ids)

    # Record state of properties that may be overwritten
    original_name = mol.GetProp(RD_NAME)
    if energies is not None and mol.HasProp(CONF_ENERGY):
        original_energy = mol.GetProp(CONF_ENERGY)
    else:
        original_energy = None

    conformer_names = []

    # Render conformers
    for idx, conf in enumerate(conformers):
        conf_id = conf.GetId()
        if renumber:
            conf_idx = idx
        else:
            conf_idx = conf_id

        if energies is not None and conf_id in energies:
            energy = energies[conf_id]
            mol.SetProp(CONF_ENERGY, "{0:0.4f}".format(energy))
   
        conf_name = "{0}_{1}".format(original_name, conf_idx)
        mol.SetProp(RD_NAME, conf_name)
        conformer_names.append(conf_name)
        block = MolToMolBlock(mol, includeStereo=True, confId=conf_id)
        print(block, file=output, end="")
        print(SDF_MODEL_END, file=output)
    # Reset changes to mol properties
    mol.SetProp(RD_NAME, original_name)
    if original_energy is not None:
        mol.SetProp(CONF_ENERGY, original_energy)
    else:
        mol.ClearProp(CONF_ENERGY)

    return conformer_names
Пример #11
0
    def test1InchiReadPubChem(self):
        for f in self.dataset.values():
            same, diff, reasonable = 0, 0, 0
            for m in f:
                if m is None:  # pragma: nocover
                    continue
                x = MolToInchi(m)
                y = None
                RDLogger.DisableLog('rdApp.error')
                mol = MolFromInchi(x)
                RDLogger.EnableLog('rdApp.error')
                if mol is not None:
                    y = MolToInchi(
                        MolFromSmiles(MolToSmiles(mol, isomericSmiles=True)))
                if y is None:
                    # metal involved?
                    try:
                        MolToInchi(m, treatWarningAsError=True)
                    except InchiReadWriteError as inst:
                        _, error = inst.args
                        if 'Metal' in error or \
                                'Charges were rearranged' in error:
                            reasonable += 1
                            continue
                    # THERE ARE NO EXAMPLES FOR THE FOLLOWING (no coverage)
                    # RDKit does not like the SMILES? use MolBlock instead
                    inchiMol = MolFromInchi(x)
                    if inchiMol:
                        rdDepictor.Compute2DCoords(inchiMol)
                        z = MolToInchi(MolFromMolBlock(
                            MolToMolBlock(inchiMol)))
                        if x == z:
                            reasonable += 1
                            continue
                    # InChI messed up the radical?
                    unsanitizedInchiMol = MolFromInchi(x, sanitize=False)
                    if sum([
                            a.GetNumRadicalElectrons() * a.GetAtomicNum()
                            for a in m.GetAtoms()
                            if a.GetNumRadicalElectrons() != 0
                    ]) != sum([
                            a.GetNumRadicalElectrons() * a.GetAtomicNum()
                            for a in unsanitizedInchiMol.GetAtoms()
                            if a.GetNumRadicalElectrons() != 0
                    ]):
                        reasonable += 1
                        continue

                    diff += 1
                    cid = m.GetProp('PUBCHEM_COMPOUND_CID')
                    print(COLOR_GREEN + 'Empty mol for PubChem Compound ' +
                          cid + '\n' + COLOR_RESET)
                    continue
                if x != y:
                    # if there was warning in the first place, then this is
                    # tolerable
                    try:
                        MolToInchi(m, treatWarningAsError=True)
                        MolFromInchi(x, treatWarningAsError=True)
                    except InchiReadWriteError as inst:
                        reasonable += 1
                        continue
                    # or if there are big rings
                    SanitizeMol(m)
                    if filter(lambda i: i >= 8,
                              [len(r) for r in m.GetRingInfo().AtomRings()]):
                        reasonable += 1
                        continue
                    # THERE ARE NO EXAMPLES FOR THE FOLLOWING (no coverage)
                    # or if RDKit loses bond stereo
                    s = MolToSmiles(m, True)
                    if MolToSmiles(MolFromSmiles(s), True) != s:
                        reasonable += 1
                        continue
                    # or if it is RDKit SMILES writer unhappy about the mol
                    inchiMol = MolFromInchi(x)
                    rdDepictor.Compute2DCoords(inchiMol)
                    z = MolToInchi(MolFromMolBlock(MolToMolBlock(inchiMol)))
                    if x == z:
                        reasonable += 1
                        continue

                    diff += 1
                    print(COLOR_GREEN +
                          'Molecule mismatch for PubChem Compound ' + cid +
                          COLOR_RESET)
                    print(inchiDiff(x, y))
                    print()
                else:
                    same += 1
            fmt = "\n{0}InChI read Summary: {1} identical, {2} variance, {3} reasonable variance{4}"
            print(fmt.format(COLOR_GREEN, same, diff, reasonable, COLOR_RESET))
            self.assertEqual(same, 621)
            self.assertEqual(diff, 0)
            self.assertEqual(reasonable, 560)
Пример #12
0
    def save(self, force_insert=False, force_update=False, *args, **kwargs):

        changed = False
        new  =  not bool(CompoundStructures.objects.filter(pk=self.pk).count())
        if settings.OPEN_SOURCE:
            if self.molfile:
                if not new: # The structure already exists and we only want to modify it
                    super(CompoundStructures, self).save(force_insert, force_update, *args, **kwargs) # this should trigger CMPD_STR_UPDATE_TRIG, which deletes compound images and properties and nulls standard inchi, key, smiles, and molformula
                    changed = True
             #   newInchi = inchiFromPipe(self.molfile, settings.INCHI_BINARIES_LOCATION['1.02'])
                #if newInchi != self.standard_inchi:
                 #   self.standard_inchi = newInchi
                  #  changed = True
            mol = MolFromInchi(self.standard_inchi.encode("ascii"))
            if mol:
            # self.canonical_smiles = MolToSmiles(mol)
                if not self.standard_inchi:
                    raise NoStandardInchi("for CompundStructure, pk = " + str(self.pk))

                newInchiKey = InchiToInchiKey(self.standard_inchi.encode("ascii"))
                if self.standard_inchi_key != newInchiKey:
                    self.standard_inchi_key = newInchiKey
                    mol = MolFromInchi(self.standard_inchi.encode("ascii"))
                    # self.canonical_smiles = MolToSmiles(mol)
                    changed = True
                    self.molfile = MolToMolBlock(MolFromMolBlock(str(self.molfile))) # This is how we do kekulisation in RDKit...

                self.clean_fields()
                self.validate_unique()
                super(CompoundStructures, self).save(force_insert, force_update, *args, **kwargs)

        else:
            if self.molfile:
                if not new: # The structure already exists and we only want to modify it
                    super(CompoundStructures, self).save(force_insert, force_update, *args, **kwargs) # this should trigger CMPD_STR_UPDATE_TRIG, which deletes compound images and properties and nulls standard inchi, key, smiles, and molformula
                    changed = True

                data = getStructure(self.molfile)

                newInchi = data['InChI']
                if newInchi != self.standard_inchi:
                    self.standard_inchi = newInchi
                    self.standard_inchi_key = data['InChIKey']
                    #self.molformula = data['Molecular_Formula']
                    self.canonical_smiles = data['Canonical_Smiles']
                    changed = True

            if not self.standard_inchi:
                raise NoStandardInchi("for CompundStructure, pk = " + str(self.pk))

            if not self.standard_inchi_key:
                self.standard_inchi_key = InchiToInchiKey(self.standard_inchi.encode("ascii"))

            self.clean_fields()
            self.validate_unique()
            super(CompoundStructures, self).save(force_insert, force_update, *args, **kwargs)

        if changed:
            self.molecule.structure_key = self.standard_inchi_key
            self.molecule.structure_type = "MOL"
            self.molecule.molfile_update = datetime.now()
            self.molecule.save()
            structureChanged.send(sender=self.__class__, instance=self)
Пример #13
0
    def process(
            self,
            input_file: str,
            output_file: str = "",
            output_file_sdf: str = "",
            sdf_append: bool = False,
            #images_prefix: str = "",
            format_output: bool = True,
            write_header: bool = True,
            osra_output_format: str = "",
            output_formats: list = None,
            dry_run: bool = False,
            csv_delimiter: str = ";",
            use_gm: bool = True,
            gm_dpi: int = 300,
            gm_trim: bool = True,
            n_jobs: int = -1,
            input_type: str = "",
            standardize_mols: bool = True,
            annotate: bool = True,
            chemspider_token: str = "",
            custom_page: int = 0,
            continue_on_failure: bool = False) -> OrderedDict:
        r"""
        Process the input file with OSRA.

        Parameters
        ----------
        input_file : str
            Path to file to be processed by OSRA.
        output_file : str
            File to write output in.
        output_file_sdf : str
            | File to write SDF output in. "sdf" output format hasn't to be in `output_formats` to write SDF output.
            | If "sdf_osra" output format is requested, suffix "-osra.sdf" will be added.
        sdf_append : bool
            If True, append new molecules to existing SDF file or create new one if doesn't exist.
        NOT IMPLEMENTED | images_prefix : str
            Prefix for images of extracted compounds which will be written.
        format_output : bool
            | If True, the value of "content" key of returned dict will be list of OrderedDicts.
            | If True and `output_file` is set, the CSV file will be written.
            | If False, the value of "content" key of returned dict will be None.
        write_header : bool
            If True and if `output_file` is set and `output_format` is True, write a CSV write_header.
        osra_output_format : str
            | Output format from OSRA. Temporarily overrides the option `output_format` set during instantiation (in __init__).
            | Choices: "smi", "can", "sdf"
            | If "sdf", additional information like coordinates cannot be retrieved (not implemented yet).
        output_formats : list
            | If True and `format_output` is also True, this specifies which molecule formats will be output.
            | You can specify more than one format, but only one format from OSRA. This format must be also set with `output_format` in __init__
              or with `osra_output_format` here.
            | When output produces by OSRA is unreadable by RDKit, you can at least have that output from OSRA.
            | Default value: ["smiles"]

            +-----------------+--------------+--------------------------------------------------------------------------------------------+
            |      Value      |    Source    |                                            Note                                            |
            +=================+==============+============================================================================================+
            |      smiles     |     RDKit    |                                          canonical                                         |
            +-----------------+--------------+--------------------------------------------------------------------------------------------+
            |   smiles_osra   | OSRA ("smi") |                                           SMILES                                           |
            +-----------------+--------------+--------------------------------------------------------------------------------------------+
            | smiles_can_osra | OSRA ("can") |                                      canonical SMILES                                      |
            +-----------------+--------------+--------------------------------------------------------------------------------------------+
            |      inchi      |     RDKit    | Not every molecule can be converted to InChI (it doesn`t support wildcard characters etc.) |
            +-----------------+--------------+--------------------------------------------------------------------------------------------+
            |     inchikey    |     RDKit    |                              The same applies as for "inchi".                              |
            +-----------------+--------------+--------------------------------------------------------------------------------------------+
            |       sdf       |     RDKit    |                     If present, an additional SDF file will be created.                    |
            +-----------------+--------------+--------------------------------------------------------------------------------------------+
            |     sdf_osra    | OSRA ("sdf") |                     If present, an additional SDF file will be created.                    |
            +-----------------+--------------+--------------------------------------------------------------------------------------------+

        dry_run : bool
            If True, only return list of commands to be called by subprocess.
        csv_delimiter : str
            Delimiter for output CSV file.
        use_gm : bool
            | If True, use GraphicsMagick to convert PDF to temporary PNG images before processing.
            | If False, OSRA will use it's own conversion of PDF to image.
            | Using gm is more reliable since OSRA (v2.1.0) is showing wrong information
              when converting directly from PDF (namely: coordinates, bond length and possibly more ones) and also there are sometimes
              incorrectly recognised structures.
        gm_dpi : int
            How many DPI will temporary PNG images have.
        gm_trim : bool
            If True, gm will trim the temporary PNG images.
        n_jobs : int
            | If `use_gm` and input file is PDF, how many jobs to use for OSRA processing of temporary PNG images.
            | If -1 all CPUs are used.
            | If 1 is given, no parallel computing code is used at all, which is useful for debugging.
            | For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used.
        input_type : str
            | When empty, input (MIME) type will be determined from magic bytes.
            | Or you can specify "pdf" or "image" and magic bytes check will be skipped.
        standardize_mols : bool
            If True and `format_output` is also True, use molvs (https://github.com/mcs07/MolVS) to standardize molecules.
        annotate : bool
            | If True, try to annotate entities in PubChem and ChemSpider. Compound IDs will be assigned by searching with
              each identifier, separately for SMILES, InChI etc.
            | If entity has InChI key yet, prefer it in searching.
            | If "*" is present in SMILES, skip annotation.
        chemspider_token : str
            Your personal token for accessing the ChemSpider API. Make account there to obtain it.
        custom_page : bool
            When `use_gm` is False, this will set the page for all extracted compounds.
        continue_on_failure : bool
            | If True, continue running even if OSRA returns non-zero exit code.
            | If False and error occurs, print it and return.

        Returns
        -------
        dict
            Keys:

            - stdout: str ... standard output from OSRA
            - stderr: str ... standard error output from OSRA
            - exit_code: int ... exit code from OSRA
            - content:

                - list of OrderedDicts ... when `format_output` is True.
                - None ... when `format_output` is False

            | If `osra_output_format` is "sdf", additional information like 'bond_length' cannot be retrieved.
            | If `use_gm` is True then stdout, stderr and exit_code will be lists containing items from each temporary image
              extracted by OSRA.

        Notes
        -----
        Only with `format_output` set to True you can use molecule standardization and more molecule formats. Otherwise
        you will only get raw stdout from OSRA (which can also be written to file if `output_file` is set).
        """

        options_internal = self.options_internal.copy()
        osra_smiles_outputs = ["smi", "can"]

        # OSRA output format check
        if osra_output_format:
            options_internal["output_format"] = osra_output_format
        else:
            osra_output_format = options_internal["output_format"]

        osra_valid_output_formats = {
            "can": "smiles_can_osra",
            "smi": "smiles_osra",
            "sdf": "sdf_osra"
        }
        if osra_output_format not in osra_valid_output_formats:
            raise ValueError(
                "Unknown OSRA output format. Possible values: {}".format(
                    osra_valid_output_formats.values()))

        if osra_output_format == "sdf":
            self.logger.warning(
                "OSRA's output format is set to \"sdf\" so additional information like coordinates cannot be retrieved."
            )

        # output formats check
        is_output_sdf = False
        is_output_sdf_osra = False
        if not output_formats:
            output_formats = ["smiles"]
        else:
            output_formats = sorted(list(set(output_formats)))
            possible_output_formats = ["smiles", "inchi", "inchikey", "sdf"]
            output_formats = [
                x for x in output_formats if x in possible_output_formats
                or x == osra_valid_output_formats[osra_output_format]
            ]

            if ("sdf" in output_formats
                    or "sdf_osra" in output_formats) and not output_file_sdf:
                self.logger.warning(
                    "Cannot write SDF output: 'output_file_sdf' is not set.")
            if output_file_sdf:
                is_output_sdf = True
            if "sdf_osra" in output_formats and osra_output_format == "sdf" and output_file_sdf:
                is_output_sdf_osra = True
            if ("smiles_osra" in output_formats or "smiles_can_osra"
                    in output_formats) and osra_output_format == "sdf":
                try:
                    output_formats.remove("smiles_osra")
                except ValueError:
                    pass
                try:
                    output_formats.remove("smiles_can_osra")
                except ValueError:
                    pass
                self.logger.warning(
                    "SMILES or canonical SMILES output from OSRA is requested, but OSRA's output format is \"{}\"."
                    .format(osra_output_format))

        # input file type check
        possible_input_types = ["pdf", "image"]
        if not input_type:
            input_type = get_input_file_type(input_file)
            if input_type not in possible_input_types:
                use_gm = False
                self.logger.warning(
                    "Input file MIME type ('{}') is not one of {}. You can specify 'input_type' directly (see docstring)."
                    .format(input_type, possible_input_types))
        elif input_type not in possible_input_types:
            raise ValueError("Possible 'input_type' values are {}".format(
                possible_input_types))

        #options = ChainMap({k: v for k, v in {"images_prefix": images_prefix}.items() if v},
        #                   options_internal)

        if annotate:
            if not chemspider_token:
                self.logger.warning(
                    "Cannot perform annotation in ChemSpider: 'chemspider_token' is empty."
                )
            [
                output_formats.append(x)
                for x in ["smiles", "inchi", "inchikey"]
                if x not in output_formats
            ]
            output_formats = sorted(output_formats)

        commands, _, _ = self.build_commands(options_internal,
                                             self._OPTIONS_REAL,
                                             self.path_to_binary)
        commands.extend(
            ["--bond", "--coordinates", "--page", "--guess", "--print"])

        if dry_run:
            return " ".join(commands)

        osra_output_list = []
        if input_type == "image" or not use_gm:
            osra_output_list.append(
                self._process(input_file,
                              commands,
                              page=custom_page if custom_page else 1))
        elif input_type == "pdf":
            with tempfile.TemporaryDirectory() as temp_dir:
                stdout, stderr, exit_code = pdf_to_images(input_file,
                                                          temp_dir,
                                                          dpi=gm_dpi,
                                                          trim=gm_trim)
                osra_output_list = Parallel(n_jobs=n_jobs)(
                    delayed(self._process)(
                        temp_image_file, commands, page=page)
                    for temp_image_file, page in get_temp_images(temp_dir))

        # summarize OSRA results
        to_return = {
            "stdout": [],
            "stderr": [],
            "exit_code": [],
            "content": None,
            "pages": []
        }
        for result in osra_output_list:
            if result["stdout"]:
                to_return["stdout"].append(result["stdout"])
                to_return["stderr"].append(result["stderr"])
                to_return["exit_code"].append(result["exit_code"])
                to_return["pages"].append(result["page"])

        if not continue_on_failure:
            errors = [(page + 1, error)
                      for page, (exit_code, error) in enumerate(
                          zip(to_return["exit_code"], to_return["stderr"]))
                      if exit_code > 0]
            if errors:
                self.logger.warning("OSRA errors:")
                for page, error in errors:
                    eprint("\tError on page {}:".format(page))
                    eprint("\n\t\t".join("\n{}".format(error).splitlines()))
                return to_return

        if not format_output:
            if output_file:
                with open(output_file, mode="w", encoding="utf-8") as f:
                    f.write("\n".join(to_return["stdout"]))
            return to_return

        output_cols = OrderedDict([("bond_length", 1), ("resolution", 2),
                                   ("confidence", 3), ("page", 4),
                                   ("coordinates", 5)])

        if osra_output_format in osra_smiles_outputs:
            compound_template_dict = OrderedDict.fromkeys(
                output_formats + list(output_cols.keys()))
        else:
            compound_template_dict = OrderedDict.fromkeys(["page"] +
                                                          output_formats)

        if any(to_return["stdout"]):
            if standardize_mols:
                standardizer = Standardizer()

            compounds = []

            if is_output_sdf:
                if sdf_append:
                    if not os.path.isfile(output_file_sdf):
                        open(output_file_sdf, mode="w",
                             encoding="utf-8").close()
                    writer = SDWriter(
                        open(output_file_sdf, mode="a", encoding="utf-8"))
                else:
                    writer = SDWriter(output_file_sdf)

            for output, page in zip(to_return["stdout"], to_return["pages"]):
                if osra_output_format in osra_smiles_outputs:
                    lines = [x.strip() for x in output.split("\n") if x]
                else:
                    lines = [x for x in output.split("$$$$") if x.strip()]

                for line in lines:
                    """
                    # so much problems with --learn
                    # we can't simply split output by " " when --learn is present, because its output is like "1,2,2,2 1"
                    if "learn" in filtered_cols:
                        learn_start = filtered_cols.index("learn") + 1 #  "smiles" col isn't in output_cols
                        learn_end = filtered_cols.index("learn") + 1 + 3
                        line[learn_start:learn_end] = [" ".join(line[learn_start:learn_end])]
                    """

                    if not line:
                        continue

                    if osra_output_format in osra_smiles_outputs:
                        line = [x.strip() for x in line.split()]
                        if custom_page:
                            line[output_cols["page"]] = custom_page
                        elif use_gm:
                            line[output_cols["page"]] = page
                        mol = MolFromSmiles(
                            line[0],
                            sanitize=False if standardize_mols else True)
                    elif osra_output_format == "sdf":
                        line = "\n" + line.strip()
                        mol = MolFromMolBlock(
                            line,
                            strictParsing=False,
                            sanitize=False if standardize_mols else True,
                            removeHs=False if standardize_mols else True)

                    if mol:
                        compound = compound_template_dict.copy()

                        if standardize_mols:
                            try:
                                mol = standardizer.standardize(mol)
                            except ValueError as e:
                                self.logger.warning(
                                    "Cannot standardize '{}': {}".format(
                                        MolToSmiles(mol), str(e)))

                        for f in output_formats:
                            if f == "smiles":
                                compound["smiles"] = MolToSmiles(
                                    mol, isomericSmiles=True)
                            elif f == "smiles_osra" and osra_output_format == "smi":
                                compound["smiles_osra"] = line[0]
                            elif f == "smiles_can_osra" and osra_output_format == "can":
                                compound["smiles_can_osra"] = line[0]
                            elif f == "inchi":
                                inchi = MolToInchi(mol)
                                if inchi:
                                    compound["inchi"] = inchi
                                else:
                                    compound["inchi"] = ""
                                    self.logger.warning(
                                        "Cannot convert to InChI: {}".format(
                                            MolToSmiles(mol)))
                            elif f == "inchikey":
                                inchi = MolToInchi(mol)
                                if inchi:
                                    compound["inchikey"] = InchiToInchiKey(
                                        inchi)
                                else:
                                    compound["inchikey"] = ""
                                    self.logger.warning(
                                        "Cannot create InChI-key from InChI: {}"
                                        .format(MolToSmiles(mol)))
                            elif f == "sdf":
                                compound["sdf"] = MolToMolBlock(
                                    mol, includeStereo=True)
                            elif f == "sdf_osra":
                                compound["sdf_osra"] = line

                        if is_output_sdf:
                            writer.write(mol)

                        if osra_output_format in osra_smiles_outputs:
                            compound.update([(x[0], x[1]) for x in zip(
                                list(output_cols.keys()), line[1:])])
                        else:
                            compound[
                                "page"] = page if use_gm else custom_page if custom_page else 1

                        compounds.append(compound)
                    else:
                        self.logger.warning("Cannot convert to RDKit mol: " +
                                            line[0])

            if is_output_sdf_osra:
                with open(output_file_sdf + "-osra.sdf",
                          mode="w",
                          encoding="utf-8") as f:
                    f.write("".join(to_return["stdout"]))

            to_return["content"] = sorted(compounds, key=lambda x: x["page"])

            if annotate:
                chemspider = ChemSpider(
                    chemspider_token) if chemspider_token else None

                for i, ent in enumerate(to_return["content"]):
                    self.logger.info("Annotating entity {}/{}...".format(
                        i + 1, len(to_return["content"])))
                    ent.update(
                        OrderedDict([("pch_cids_by_inchikey", ""),
                                     ("chs_cids_by_inchikey", ""),
                                     ("pch_cids_by_smiles", ""),
                                     ("chs_cids_by_smiles", ""),
                                     ("pch_cids_by_inchi", ""),
                                     ("chs_cids_by_inchi", ""),
                                     ("pch_iupac_name", ""),
                                     ("chs_common_name", ""),
                                     ("pch_synonyms", "")]))

                    results = []

                    # prefer InChI key
                    if "inchikey" in ent and ent["inchikey"]:
                        try:
                            results = get_compounds(ent["inchikey"],
                                                    "inchikey")
                            if results:
                                if len(results) == 1:
                                    result = results[0]
                                    synonyms = result.synonyms
                                    if synonyms:
                                        ent["pch_synonyms"] = "\"{}\"".format(
                                            "\",\"".join(synonyms))
                                    ent["pch_iupac_name"] = result.iupac_name
                                ent["pch_cids_by_inchikey"] = "\"{}\"".format(
                                    ",".join([str(c.cid) for c in results]))
                        except (BadRequestError, NotFoundError,
                                PubChemHTTPError, ResponseParseError,
                                ServerError, TimeoutError, PubChemPyError):
                            pass

                        results = chemspider.search(
                            ent["inchikey"]) if chemspider_token else []
                        if results:
                            if len(results) == 1:
                                result = results[0]
                                ent["chs_common_name"] = result.common_name
                            ent["chs_cids_by_inchikey"] = "\"{}\"".format(
                                ",".join([str(c.csid) for c in results]))
                    else:
                        for search_field, col_pch, col_chs in [
                            ("smiles", "pch_cids_by_smiles",
                             "chs_cids_by_smiles"),
                            ("inchi", "pch_cids_by_inchi", "chs_cids_by_inchi")
                        ]:
                            results_pch = []
                            results_chs = []

                            if search_field == "smiles" and "smiles" in ent and ent[
                                    "smiles"] and "*" not in ent["smiles"]:
                                try:
                                    results_pch = get_compounds(
                                        ent["smiles"], "smiles")
                                except (BadRequestError, NotFoundError,
                                        PubChemHTTPError, ResponseParseError,
                                        ServerError, TimeoutError,
                                        PubChemPyError):
                                    pass
                                results_chs = chemspider.search(
                                    ent["smiles"]) if chemspider_token else []
                            elif search_field == "inchi" and "inchi" in ent and ent[
                                    "inchi"]:
                                try:
                                    results_pch = get_compounds(
                                        ent["inchi"], "inchi")
                                except (BadRequestError, NotFoundError,
                                        PubChemHTTPError, ResponseParseError,
                                        ServerError, TimeoutError,
                                        PubChemPyError):
                                    pass
                                results_chs = chemspider.search(
                                    ent["inchi"]) if chemspider_token else []

                            if results_pch:
                                ent[col_pch] = "\"{}\"".format(",".join(
                                    [str(c.cid) for c in results_pch]))
                            if results_chs:
                                ent[col_chs] = "\"{}\"".format(",".join(
                                    [str(c.csid) for c in results_chs]))

                            sleep(0.5)

            if output_file:
                dict_to_csv(to_return["content"],
                            output_file=output_file,
                            csv_delimiter=csv_delimiter,
                            write_header=write_header)

            if is_output_sdf:
                writer.close()
        elif not any(to_return["stdout"]) and output_file:
            write_empty_file(output_file,
                             csv_delimiter=csv_delimiter,
                             header=list(compound_template_dict.keys()),
                             write_header=write_header)

        return to_return
Пример #14
0
 def molfile(self, m):
     """make molfile from molecule"""
     return MolToMolBlock(m)
Пример #15
0
    def process(self,
                input: Union[str, list] = "",
                input_file: str = "",
                output_file: str = "",
                output_file_sdf: str = "",
                output_file_cml: str = "",
                sdf_append: bool = False,
                format_output: bool = True,
                opsin_output_format: str = "",
                output_formats: list = None,
                write_header: bool = True,
                dry_run: bool = False,
                csv_delimiter: str = ";",
                standardize_mols: bool = True,
                normalize_plurals: bool = True,
                continue_on_failure: bool = False) -> OrderedDict:
        r"""
        Process the input file with OPSIN.

        Parameters
        ----------
        input : str or list
            | str: String with IUPAC names, one per line.
            | list: List of IUPAC names.
        input_file : str
            Path to file to be processed by OPSIN. One IUPAC name per line.
        output_file : str
            File to write output in.
        output_file_sdf : str
            File to write SDF output in.
        output_file_cml : str
            | File to write CML (Chemical Markup Language) output in. `opsin_output_format` must be "cml".
            | Not supported by RDKit so standardization and conversion to other formats cannot be done.
        sdf_append : bool
            If True, append new molecules to existing SDF file or create new one if doesn't exist.
        format_output : bool
            | If True, the value of "content" key of returned dict will be list of OrderedDicts with keys:
            | "iupac", <output formats>, ..., "error"
            | If True and `output_file` is set it will be created as CSV file with columns: "iupac", <output formats>, ..., "error"
            | If False, the value of "content" key of returned dict will be None.
        opsin_output_format : str
            | Output format from OPSIN. Temporarily overrides the option `output_format` set during instantiation (in __init__).
            | Choices: "cml", "smi", "extendedsmi", "inchi", "stdinchi", "stdinchikey"
        output_formats : list
            | If True and `format_output` is also True, this specifies which molecule formats will be output.
            | You can specify more than one format, but only one format from OPSIN. This format must be also set with `output_format` in __init__
              or with `osra_output_format` here.
            | Default value: ["smiles"]

            +-----------------------+-----------------------+--------------------------------------------------------------------------------------------+
            |         Value         |         Source        |                                            Note                                            |
            +=======================+=======================+============================================================================================+
            |         smiles        |         RDKit         |                                          canonical                                         |
            +-----------------------+-----------------------+--------------------------------------------------------------------------------------------+
            |      smiles_opsin     |     OPSIN ("smi")     |                                           SMILES                                           |
            +-----------------------+-----------------------+--------------------------------------------------------------------------------------------+
            | smiles_extended_opsin | OPSIN ("extendedsmi") |                          Extended SMILES. Not supported by RDKit.                          |
            +-----------------------+-----------------------+--------------------------------------------------------------------------------------------+
            |         inchi         |         RDKit         | Not every molecule can be converted to InChI (it doesn`t support wildcard characters etc.) |
            +-----------------------+-----------------------+--------------------------------------------------------------------------------------------+
            |      inchi_opsin      |    OPSIN ("inchi")    |                                            InChI                                           |
            +-----------------------+-----------------------+--------------------------------------------------------------------------------------------+
            |     stdinchi_opsin    |   OPSIN ("stdinchi")  |                                       standard InChI                                       |
            +-----------------------+-----------------------+--------------------------------------------------------------------------------------------+
            |        inchikey       |         RDKit         |      The same applies as for "inchi". Also molecule cannot be created from InChI-key.      |
            +-----------------------+-----------------------+--------------------------------------------------------------------------------------------+
            |   stdinchikey_opsin   | OPSIN ("stdinchikey") |               Standard InChI-key. Cannot be used by RDKit to create molecule.              |
            +-----------------------+-----------------------+--------------------------------------------------------------------------------------------+
            |          sdf          |         RDKit         |                     If present, an additional SDF file will be created.                    |
            +-----------------------+-----------------------+--------------------------------------------------------------------------------------------+

        write_header : bool
            If True and if `output_file` is set and `output_format` is True, write a CSV write_header.
        dry_run : bool
            If True, only return list of commands to be called by subprocess.
        csv_delimiter : str
            Delimiter for output CSV file.
        standardize_mols : bool
            If True and `format_output` is also True, use molvs (https://github.com/mcs07/MolVS) to standardize molecules.
        normalize_plurals : bool
            | If True, normalize plurals ("nitrates" -> "nitrate"). See OPSIN.PLURAL_PATTERNS for relating plurals. You can
              set your own regex pattern with `plural_patterns` in __init__.
        continue_on_failure : bool
            | If True, continue running even if OPSIN returns non-zero exit code.
            | If False and error occurs, print it and return.

        Returns
        -------
        dict
            Keys:

            - stdout: str ... standard output from OPSIN
            - stderr: str ... standard error output from OPSIN
            - exit_code: int ... exit code from OPSIN
            - content:

              - list of OrderedDicts ... when format_output is True. Fields: "iupac", <output formats>, ..., "error"
              - None ... when format_output is False
        """

        options_internal = self.options_internal.copy()
        opsin_nonreadable_formats = ["cml", "stdinchikey"]

        if input and input_file:
            input_file = ""
            self.logger.warning(
                "Both 'input' and 'input_file' are set, but 'input' will be prefered."
            )
        elif not input and not input_file:
            raise ValueError("One of 'input' or 'input_file' must be set.")

        # OSRA output format check
        if opsin_output_format:
            options_internal["output_format"] = opsin_output_format
        else:
            opsin_output_format = options_internal["output_format"]

        opsin_valid_output_formats = {
            "cml": "cml_opsin",
            "smi": "smiles_opsin",
            "extendedsmi": "smiles_extended_opsin",
            "inchi": "inchi_opsin",
            "stdinchi": "stdinchi_opsin",
            "stdinchikey": "stdinchikey_opsin"
        }

        if opsin_output_format not in opsin_valid_output_formats:
            raise ValueError(
                "Unknown OPSIN output format. Possible values: {}".format(
                    list(opsin_valid_output_formats.keys())))

        if standardize_mols and opsin_output_format in opsin_nonreadable_formats:
            self.logger.warning(
                "OPSIN output format is \"{}\", which cannot be used by RDKit."
                .format(opsin_output_format))

        # output formats check
        if not output_formats:
            output_formats = ["smiles"]
        else:
            if opsin_output_format == "stdinchikey":
                output_formats = ["stdinchikey_opsin"]
            elif opsin_output_format == "extendedsmi":
                output_formats = ["smiles_extended_opsin"]
            else:
                output_formats = sorted(list(set(output_formats)))
                possible_output_formats = [
                    "smiles", "inchi", "inchikey", "sdf"
                ]
                output_formats = [
                    x for x in output_formats if x in possible_output_formats
                    or x == opsin_valid_output_formats[opsin_output_format]
                ]

        if normalize_plurals:
            if input_file:
                with open(input_file, mode="r", encoding="utf-8") as f:
                    input = "\n".join([x.strip() for x in f.readlines()])
                input_file = ""
            input = self.normalize_iupac(input)

        commands, _, _ = self.build_commands(options_internal,
                                             self._OPTIONS_REAL,
                                             self.path_to_binary)

        if input_file:
            commands.append(input)
            stdout, stderr, exit_code = common_subprocess(commands)
        elif input:
            if isinstance(input, list):
                input = "\n".join([x.strip() for x in input])
            stdout, stderr, exit_code = common_subprocess(commands,
                                                          stdin=input)
        else:
            raise UserWarning("Input is empty.")

        if dry_run:
            return " ".join(commands)

        to_return = {
            "stdout": stdout,
            "stderr": stderr,
            "exit_code": exit_code,
            "content": None
        }

        if not continue_on_failure and exit_code > 0:
            self.logger.warning("OPSIN error:")
            eprint("\n\t".join("\n{}".format(stderr).splitlines()))
            return to_return

        if output_file_cml and opsin_output_format == "cml":
            with open(output_file_cml, mode="w", encoding="utf-8") as f:
                f.write(stdout)
            return to_return
        elif output_file_cml and opsin_output_format != "cml":
            self.logger.warning(
                "Output file for CML is requested, but OPSIN output format is '{}'"
                .format(opsin_output_format))

        if not format_output:
            if output_file:
                with open(output_file, mode="w", encoding="utf-8") as f:
                    f.write(stdout)
            return to_return

        compounds = []
        standardizer = Standardizer()
        empty_cols = OrderedDict([(x, "") for x in output_formats])

        if output_file_sdf:
            if sdf_append:
                if not os.path.isfile(output_file_sdf):
                    open(output_file_sdf, mode="w", encoding="utf-8").close()
                writer = SDWriter(
                    open(output_file_sdf, mode="a", encoding="utf-8"))
            else:
                writer = SDWriter(output_file_sdf)

        stdout = stdout.split("\n")
        del stdout[-1]
        stderr = [
            x.strip() for x in stderr.split("\n")[1:] if x
        ]  # remove first line of stderr because there is OPSIN message (y u du dis...)

        if input_file:
            with open(input_file, mode="r", encoding="utf-8") as f:
                lines = iter(f.readlines())
        else:
            lines = iter(input.split("\n"))

        mol_output_template = OrderedDict.fromkeys(["iupac"] + output_formats +
                                                   ["error"])

        e = 0
        for i, line in enumerate(lines):
            line = line.strip()
            converted = stdout[i].strip()
            mol_output = mol_output_template.copy()

            if converted:
                if opsin_output_format == "stdinchikey":
                    compounds.append(
                        OrderedDict([("iupac", line),
                                     ("stdinchikey_opsin", converted),
                                     ("error", "")]))
                    continue
                elif opsin_output_format == "extendedsmi":
                    compounds.append(
                        OrderedDict([("iupac", line),
                                     ("smiles_extended_opsin", converted),
                                     ("error", "")]))
                    continue

                if opsin_output_format == "smi":
                    mol = MolFromSmiles(
                        converted,
                        sanitize=False if standardize_mols else True)
                elif opsin_output_format in ["inchi", "stdinchi"]:
                    mol = MolFromInchi(
                        converted,
                        sanitize=False if standardize_mols else True,
                        removeHs=False if standardize_mols else True)

                if mol:
                    if standardize_mols:
                        try:
                            mol = standardizer.standardize(mol)
                        except ValueError as e:
                            self.logger.warning(
                                "Cannot standardize '{}': {}".format(
                                    MolToSmiles(mol), str(e)))

                    for f in output_formats:
                        if f == "smiles":
                            mol_output["smiles"] = MolToSmiles(
                                mol, isomericSmiles=True)
                        elif f == "smiles_opsin" and opsin_output_format == "smi":
                            mol_output["smiles_opsin"] = converted
                        elif f == "inchi":
                            inchi = MolToInchi(mol)
                            if inchi:
                                mol_output["inchi"] = inchi
                            else:
                                mol_output["inchi"] = ""
                                self.logger.warning(
                                    "Cannot convert to InChI: {}".format(
                                        converted))
                        elif f == "inchi_opsin" and opsin_output_format == "inchi":
                            mol_output["inchi_opsin"] = converted
                        elif f == "stdinchi_opsin" and opsin_output_format == "stdinchi":
                            mol_output["stdinchi_opsin"] = converted
                        elif f == "inchikey":
                            inchi = MolToInchi(mol)
                            if inchi:
                                mol_output["inchikey"] = InchiToInchiKey(inchi)
                            else:
                                mol_output["inchikey"] = ""
                                self.logger.warning(
                                    "Cannot create InChI-key from InChI: {}".
                                    format(converted))
                        elif f == "stdinchikey_opsin" and opsin_output_format == "stdinchikey":
                            mol_output["stdinchikey_opsin"] = converted
                        elif f == "sdf":
                            mol_output["sdf"] = MolToMolBlock(
                                mol, includeStereo=True)

                    if output_file_sdf:
                        writer.write(mol)

                    mol_output.update(
                        OrderedDict([("iupac", line), ("error", "")]))
                else:
                    mol_output.update([
                        ("iupac", line),
                        ("error",
                         "Cannot convert to RDKit mol: {}".format(converted))
                    ])
                    mol_output.update(empty_cols)
                    self.logger.warning(compounds[-1].error)
            else:
                try:
                    error = stderr[e].strip()
                except IndexError:
                    error = ""

                mol_output.update([("iupac", line), ("error", error)])
                mol_output.update(empty_cols)
                e += 1
            compounds.append(mol_output)

        to_return["content"] = compounds

        if output_file and compounds:
            dict_to_csv(to_return["content"],
                        output_file=output_file,
                        csv_delimiter=csv_delimiter,
                        write_header=write_header)
        elif output_file and not compounds:
            write_empty_file(output_file,
                             csv_delimiter=csv_delimiter,
                             header=list(mol_output_template.keys()),
                             write_header=write_header)

        return to_return