def train_input(): X_train, Y_train = read_data.read_train_data() Y_train = np.expand_dims(Y_train, axis=-1) return X_train, Y_train
import tensorflow as tf from tensorflow._api.v1.keras import layers import read_data x_train, y_train = read_data.read_train_data() x_test, y_test = read_data.read_test_data() num, H, W, _ = x_train.shape model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=(1, 1), padding='valid', data_format='channels_last', activation='relu', use_bias=True, input_shape=(H, W, 1)), tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=(1, 1), padding='same', data_format='channels_last', activation='relu', use_bias=True, input_shape=(H - 2, W - 2, 16)), tf.keras.layers.Conv2D(filters=64, kernel_size=3, strides=(1, 1), padding='same', data_format='channels_last', activation='relu',
import random import csv """ This file is to plot the relationship between k and prediciton: """ def distance(data1, data2): sum = 0. for i in range(len(data1)): sum += math.pow(data1[i] - data2[i], 2) return math.sqrt(sum) # read data: data, train_data, validation_data, test_data, y, y_train, y_validation, y_test = read_data.read_train_data( ) res = [] train_data_sample = [] y_train_sample = [] # read data from csv files: with open('model_data.csv', newline='') as csvfile: reader = csv.reader(csvfile, delimiter=" ", quotechar='|') for row in reader: train_data_sample.append((list(map(int, row[0].split(','))))) with open('model_label.csv', newline='') as csvfile: reader = csv.reader(csvfile, delimiter=" ", quotechar='|') for row in reader: # only 1 row: y_train_sample = (list(map(int, row[0].split(','))))
pad_sequence(list(reversed([init_vector(c) for c in _ds.bw])), _max_length_bw)) _input_fw = np.array(_input_fw) _input_bw = np.array(_input_bw) _length_fw = np.array(_length_fw) _length_bw = np.array(_length_bw) _targets = np.array(_targets) _target_ids = np.array(_target_ids) _nb_senses = np.array(_nb_senses) return _input_fw, _input_bw, _length_fw, _length_bw, _targets, \ _target_ids, _nb_senses, _output_fw_idx, _output_bw_idx if __name__ == "__main__": TRAIN_DATA, LEMMA2SENSES, LEMMA2INT = read_data.read_train_data( read_data.read_x("ALL.data.xml")[0], read_data.read_y("ALL.gold.key.bnids.txt"), True) MAX_NB_SENSES = max([len(LEMMA2SENSES[k]) for k in LEMMA2SENSES ]) # max number of senses among all target words MAX_NB_TARGETS = len(LEMMA2SENSES) # how many target words # load word embedding initialized by init_emb (run init_emb first if you don't have this file) with open('pretrained_vectors/needed' + '.pkl', 'rb') as f: WORD_VECTORS = pickle.load(f) WORD_VECTORS["_drop_"] = np.random.uniform( -0.1, 0.1, 300) # add drop vector for drop words NB_EPOCHS = 100 # number of epochs to train x_val, y_val, _ = read_data.read_test_data( LEMMA2INT, LEMMA2SENSES, WORD_VECTORS) # read validation data """train models"""