Пример #1
0
    plot = 1  #set to 1 if you want to plot the result
    report = 1  #set to 1 if you want to export a csv report
    omega_percent = 5.  #choose the omega within the top that percent defined in(0,100)
    n0_min = 1  #minmum mode number (include) that finder will cover
    n0_max = 20  #maximum mode number (include) that finder will cover
    q_scale = 1.  #set the q to q*q_scale
    mref = 2.  # mass of ion in proton mass, D=2.  ,T=3.

    x0_center_choose = 1  #change to 1 if one wants to choose mid-pedestal manually
    x0_center_pick = 0.95
    #**************End of Setting up*********************************************
    #**************End of Block for user******************************************

    #*************Loading the data******************************************
    if profile_type == "ITERDB":
        rhot0, rhop0, te0, ti0, ne0, ni0, nz0, vrot0 = read_profile_file(
            profile_type, profile_name, geomfile_name, suffix)
    else:
        rhot0, rhop0, te0, ti0, ne0, ni0, vrot0 = read_profile_file(
            profile_type, profile_name, geomfile_name, suffix)

    if geomfile_type == "gfile":
        xgrid, q, R_ref = read_geom_file(geomfile_type, geomfile_name, suffix)
    elif geomfile_type == "GENE_tracor":
        xgrid, q, Lref, R_ref, Bref, x0_from_para = read_geom_file(
            geomfile_type, geomfile_name, suffix)

    q = q * q_scale

    if geomfile_type == "GENE_tracor" and profile_type != "profile":
        rhot0_range_min = np.argmin(abs(rhot0 - xgrid[0]))
        rhot0_range_max = np.argmin(abs(rhot0 - xgrid[-1]))
Пример #2
0
def Parameter_reader(profile_name, geomfile, q_scale, manual_ped, mid_ped0,
                     plot, output_csv):
    n0 = 1.
    mref = 2.  # mass of ion in proton mass

    rhot0, rhop0, te0, ti0, ne0, ni0, vrot0 = read_profile_file(
        profile_type, profile_name, geomfile_name)
    if geomfile_type == "gfile":
        xgrid, q = read_geom_file(geomfile_type, geomfile_name, suffix)
    elif geomfile_type == "GENE_tracor":
        xgrid, q, Lref, Bref, x0_from_para = read_geom_file(
            geomfile_type, geomfile_name, suffix)

    q = q * q_scale

    if geomfile_type == "GENE_tracor":
        rhot0_range_min = np.argmin(abs(rhot0 - xgrid[0]))
        rhot0_range_max = np.argmin(abs(rhot0 - xgrid[-1]))
        rhot0 = rhot0[rhot0_range_min:rhot0_range_max]
        rhop0 = rhop0[rhot0_range_min:rhot0_range_max]
        te0 = te0[rhot0_range_min:rhot0_range_max]
        ti0 = ti0[rhot0_range_min:rhot0_range_max]
        ne0 = ne0[rhot0_range_min:rhot0_range_max]
        ni0 = ni0[rhot0_range_min:rhot0_range_max]
        vrot0 = vrot0[rhot0_range_min:rhot0_range_max]

    uni_rhot = np.linspace(min(rhot0), max(rhot0), len(rhot0) * 10.)

    te_u = interp(rhot0, te0, uni_rhot)
    ne_u = interp(rhot0, ne0, uni_rhot)
    ni_u = interp(rhot0, ni0, uni_rhot)
    vrot_u = interp(rhot0, vrot0, uni_rhot)
    q = interp(xgrid, q, uni_rhot)
    tprime_e = -fd_d1_o4(te_u, uni_rhot) / te_u
    nprime_e = -fd_d1_o4(ne_u, uni_rhot) / ne_u
    qprime = fd_d1_o4(q, uni_rhot) / q

    #center_index = np.argmax((tprime_e*te_u+nprime_e*ne_u)[0:int(len(tprime_e)*0.99)])

    if manual_ped == 1:
        x0_center = mid_ped0
    else:
        if geomfile_type == "gfile":
            midped, topped = find_pedestal(file_name=geomfile_name,
                                           path_name='',
                                           plot=False)
        elif geomfile_type == "GENE_tracor":
            midped = x0_from_para
        x0_center = midped

    print('mid pedestal is at r/a = ' + str(x0_center))
    if geomfile_type == "gfile":
        Lref, Bref, R_major, q0, shat0 = get_geom_pars(geomfile_name,
                                                       x0_center)

    print("Lref=" + str(Lref))
    print("x0_center=" + str(x0_center))

    index_begin = np.argmin(abs(uni_rhot - x0_center + 2 * (1. - x0_center)))

    te_u = te_u[index_begin:len(uni_rhot) - 1]
    ne_u = ne_u[index_begin:len(uni_rhot) - 1]
    ni_u = ni_u[index_begin:len(uni_rhot) - 1]
    vrot_u = vrot_u[index_begin:len(uni_rhot) - 1]
    q = q[index_begin:len(uni_rhot) - 1]
    tprime_e = tprime_e[index_begin:len(uni_rhot) - 1]
    nprime_e = nprime_e[index_begin:len(uni_rhot) - 1]
    qprime = qprime[index_begin:len(uni_rhot) - 1]
    uni_rhot = uni_rhot[index_begin:len(uni_rhot) - 1]

    Lt = 1. / tprime_e
    Ln = 1. / nprime_e
    Lq = 1. / qprime

    center_index = np.argmin(abs(uni_rhot - x0_center))

    q0 = q[center_index]

    ne = ne_u / (10.**19.)  # in 10^19 /m^3
    ni = ni_u / (10.**19.)  # in 10^19 /m^3
    te = te_u / 1000.  #in keV
    m_SI = mref * 1.6726 * 10**(-27)
    me_SI = 9.11 * 10**(-31)
    c = 1.
    qref = 1.6 * 10**(-19)
    #refes to GENE manual
    coll_c = 2.3031 * 10**(-5) * Lref * ne / (te)**2 * (
        24 - np.log(np.sqrt(ne * 10**13) / (te * 1000)))
    coll_ei = 4 * (ni / ne) * coll_c * np.sqrt(
        te * 1000. * qref / me_SI) / Lref
    nuei = coll_ei
    beta = 403. * 10**(-5) * ne * te / Bref**2.

    nref = ne_u[center_index]
    te_mid = te_u[center_index]
    Tref = te_u[center_index] * qref

    cref = np.sqrt(Tref / m_SI)
    Omegaref = qref * Bref / m_SI / c
    rhoref = cref / Omegaref
    kymin = n0 * q0 * rhoref / (Lref * x0_center)
    kyGENE = kymin * (q / q0) * np.sqrt(te_u / te_mid) * (
        x0_center / uni_rhot)  #Add the effect of the q varying
    #from mtm_doppler
    omMTM = kyGENE * (tprime_e + nprime_e)
    gyroFreq = 9.79E3 / np.sqrt(mref) * np.sqrt(te_u) / Lref
    mtmFreq = omMTM * gyroFreq / (2. * np.pi * 1000.)
    omegaDoppler = abs(vrot_u * n0 / (2. * np.pi * 1000.))
    omega = mtmFreq + omegaDoppler

    omega_n_GENE = kyGENE * (nprime_e)  #in cs/a
    omega_n = omega_n_GENE * gyroFreq / (2. * np.pi * 1000.)  #in kHz

    coll_ei = coll_ei / (1000.)  #in kHz

    shat = Ln / Lq
    eta = Ln / Lt
    ky = kyGENE
    nu = (coll_ei) / (omega_n)

    mean_rho, xstar = omega_gaussian_fit(uni_rhot, mtmFreq, rhoref, Lref, plot)

    if plot == True:
        plt.clf()
        plt.xlabel('r/a')
        plt.ylabel('eta')
        plt.plot(uni_rhot, eta, label='eta')
        plt.show()

        plt.clf()
        #plt.title('mode number finder')
        plt.xlabel('r/a')
        plt.ylabel('omega*(Lab), kHz')
        plt.plot(uni_rhot, omega, label='omega*(Lab)')
        plt.show()

        plt.clf()
        plt.xlabel('r/a')
        plt.ylabel('eta')
        plt.plot(uni_rhot, eta, label='eta')
        plt.show()

        plt.clf()
        plt.xlabel('r/a')
        plt.ylabel('shat')
        plt.plot(uni_rhot, shat, label='shat')
        plt.show()

        plt.clf()
        plt.xlabel('r/a')
        plt.ylabel('beta')
        plt.plot(uni_rhot, beta, label='beta')
        plt.show()

        plt.clf()
        plt.xlabel('r/a')
        plt.ylabel('ky rhoi')
        plt.plot(uni_rhot, ky, label='ky')
        plt.show()

    if output_csv == True:
        with open('profile_output.csv', 'w') as csvfile:
            data = csv.writer(csvfile, delimiter=',')
            data.writerow([
                'x/a', 'nu_ei(kHz)', 'omega*n(kHz)', 'omega* plasma(kHz)',
                'Doppler shift(kHz)', 'nu/omega*n', 'eta', 'shat', 'beta',
                'ky rhoi(for n=1)'
            ])
            for i in range(len(uni_rhot)):
                data.writerow([
                    uni_rhot[i], coll_ei[i], omega_n[i], mtmFreq[i],
                    omegaDoppler[i], nu[i], eta[i], shat[i], beta[i], ky[i]
                ])
        csvfile.close()

    return uni_rhot, nu, eta, shat, beta, ky, q, mtmFreq, omegaDoppler, omega_n, omega_n_GENE, xstar, Lref, rhoref
Пример #3
0
def Parameter_reader(path, profile_name, geomfile, q_scale, manual_ped,
                     mid_ped0, plot, output_csv):
    n0 = 1.
    mref = 2.  # mass of ion in proton mass
    if profile_type == "ITERDB":
        rhot0, rhop0, te0, ti0, ne0, ni0, nz0, vrot0 = read_profile_file(
            profile_type, path + '/' + profile_name,
            path + '/' + geomfile_name, suffix)
    elif profile_type == "pfile":
        rhot0, rhop0, te0, ti0, ne0, ni0, nz0, vrot0 = read_profile_file(
            profile_type, path + '/' + profile_name,
            path + '/' + geomfile_name, suffix)

    if geomfile_type == "gfile":
        xgrid, q, R_ref = read_geom_file(geomfile_type,
                                         path + '/' + geomfile_name, suffix)
    elif geomfile_type == "GENE_tracor":
        xgrid, q, Lref, R_ref, Bref, x0_from_para = read_geom_file(
            geomfile_type, path + '/' + geomfile_name, suffix)

    q = q * q_scale

    if geomfile_type == "GENE_tracor" and profile_type != "profile":
        rhot0_range_min = np.argmin(abs(rhot0 - xgrid[0]))
        rhot0_range_max = np.argmin(abs(rhot0 - xgrid[-1]))
        rhot0 = rhot0[rhot0_range_min:rhot0_range_max]
        rhop0 = rhop0[rhot0_range_min:rhot0_range_max]
        te0 = te0[rhot0_range_min:rhot0_range_max]
        ti0 = ti0[rhot0_range_min:rhot0_range_max]
        ne0 = ne0[rhot0_range_min:rhot0_range_max]
        ni0 = ni0[rhot0_range_min:rhot0_range_max]
        nz0 = nz0[rhot0_range_min:rhot0_range_max]
        vrot0 = vrot0[rhot0_range_min:rhot0_range_max]

    uni_rhot = np.linspace(min(rhot0), max(rhot0), len(rhot0) * 10)

    te_u = interp(rhot0, te0, uni_rhot)
    ne_u = interp(rhot0, ne0, uni_rhot)
    ni_u = interp(rhot0, ni0, uni_rhot)
    print(str((len(rhot0), len(nz0), len(uni_rhot))))
    nz_u = interp(rhot0, nz0, uni_rhot)
    vrot_u = interp(rhot0, vrot0, uni_rhot)
    q = interp(xgrid, q, uni_rhot)
    tprime_e = -fd_d1_o4(te_u, uni_rhot) / te_u
    nprime_e = -fd_d1_o4(ne_u, uni_rhot) / ne_u
    qprime = fd_d1_o4(q, uni_rhot) / q

    #center_index = np.argmax((tprime_e*te_u+nprime_e*ne_u)[0:int(len(tprime_e)*0.99)])

    if manual_ped == 1:
        x0_center = mid_ped0
    else:
        if geomfile_type == "gfile":
            midped, topped = find_pedestal(file_name=path + '/' +
                                           geomfile_name,
                                           path_name='',
                                           plot=False)
        elif geomfile_type == "GENE_tracor":
            midped = x0_from_para
        x0_center = midped

    print('mid pedestal is at r/a = ' + str(x0_center))
    if geomfile_type == "gfile":
        Lref, Bref, R_major, q0, shat0 = get_geom_pars(
            path + '/' + geomfile_name, x0_center)

    print("Lref=" + str(Lref))
    print("x0_center=" + str(x0_center))

    index_begin = np.argmin(abs(uni_rhot - x0_center + 2 * (1. - x0_center)))

    te_u = te_u[index_begin:len(uni_rhot) - 1]
    ne_u = ne_u[index_begin:len(uni_rhot) - 1]
    ni_u = ni_u[index_begin:len(uni_rhot) - 1]
    nz_u = nz_u[index_begin:len(uni_rhot) - 1]
    vrot_u = vrot_u[index_begin:len(uni_rhot) - 1]
    q = q[index_begin:len(uni_rhot) - 1]
    tprime_e = tprime_e[index_begin:len(uni_rhot) - 1]
    nprime_e = nprime_e[index_begin:len(uni_rhot) - 1]
    qprime = qprime[index_begin:len(uni_rhot) - 1]
    uni_rhot = uni_rhot[index_begin:len(uni_rhot) - 1]

    Lt = 1. / tprime_e
    Ln = 1. / nprime_e

    center_index = np.argmin(abs(uni_rhot - x0_center))

    q0 = q[center_index]

    ne = ne_u / (10.**19.)  # in 10^19 /m^3
    ni = ni_u / (10.**19.)  # in 10^19 /m^3
    nz = nz_u / (10.**19.)  # in 10^19 /m^3
    te = te_u / 1000.  #in keV
    m_SI = mref * 1.6726 * 10**(-27)
    me_SI = 9.11 * 10**(-31)
    c = 1.
    qref = 1.6 * 10**(-19)
    #refes to GENE manual
    coll_c = 2.3031 * 10**(-5) * Lref * ne / (te)**2 * (
        24 - np.log(np.sqrt(ne * 10**13) / (te * 1000)))
    coll_ei = 4. * coll_c * np.sqrt(te * 1000. * qref / me_SI) / Lref
    nuei = coll_ei
    beta = 403. * 10**(-5) * ne * te / Bref**2.

    nref = ne_u[center_index]
    te_mid = te_u[center_index]
    Tref = te_u[center_index] * qref

    cref = np.sqrt(Tref / m_SI)
    Omegaref = qref * Bref / m_SI / c
    rhoref = cref / Omegaref
    rhoref_temp = rhoref * np.sqrt(te_u / te_mid)
    kymin = n0 * q0 * rhoref / (Lref * x0_center)
    kyGENE = kymin * (q / q0) * np.sqrt(te_u / te_mid) * (
        x0_center / uni_rhot)  #Add the effect of the q varying
    #from mtm_doppler
    omMTM = kyGENE * (tprime_e + nprime_e)
    gyroFreq = 9.79E3 / np.sqrt(mref) * np.sqrt(te_u) / Lref
    mtmFreq = omMTM * gyroFreq / (2. * np.pi * 1000.)
    omegaDoppler = abs(vrot_u * n0 / (2. * np.pi * 1000.))
    omega = mtmFreq + omegaDoppler

    global zeff
    zeff = ((ni + Z**2 * nz) / ne)[center_index]

    if zeff_manual != False:
        zeff = zeff_manual
    print('********zeff*********')
    print('zeff=' + str(zeff))
    print('********zeff*********')

    omega_n_GENE = kyGENE * (nprime_e)  #in cs/a
    print("*******************")
    print("*******************")
    print(np.max(omega_n_GENE))
    print("*******************")
    print("*******************")
    omega_n = omega_n_GENE * gyroFreq / (2. * np.pi * 1000.)  #in kHz

    #coll_ei=coll_ei/(1000.)  #in kHz
    coll_ei = coll_ei / (2. * np.pi * 1000.)  #in kHz

    Lq = 1. / (Lref / (R_ref * q) * qprime)

    shat = Ln / Lq
    eta = Ln / Lt
    ky = kyGENE * np.sqrt(2.)
    nu = (coll_ei) / (np.max(omega_n))

    nuei = nu * omega_n_GENE / omega_n

    if plot == True:
        if profile_type == "ITERDB0":
            plt.clf()
            plt.plot(uni_rhot, nuei, label='nuei(cs/a)')
            plt.plot(uni_rhot, nuei * 2. * np.pi, label='nuei(cs/a)*2 pi')
            plt.plot(uni_rhot, nuei * zeff, label='nuei*zeff')
            plt.legend()
            plt.title('nuei')
            plt.axvline(0.96, color='red', alpha=1.)
            plt.show()

            index = np.argmin(
                abs(float(input("Enter location of interest:\n")) - uni_rhot))

            print('zeff(x/r=' + str(uni_rhot[index]) + ')=' + str(zeff[index]))
            #print('id(x/r='+str(rho)+')='+str(id[index]))
            print('nuei*zeff(x/r=' + str(uni_rhot[index]) + ')=' +
                  str((nuei * zeff)[index]))
            print('nuei*2 pi(x/r=' + str(uni_rhot[index]) + ')=' +
                  str((nuei * 2. * np.pi)[index]))

        plt.clf()
        plt.xlabel('r/a')
        plt.ylabel('nuei(kHZ)')
        plt.plot(uni_rhot, nu * np.max(omega_n), label='coll')
        plt.show()

        d = {'uni_rhot': uni_rhot, 'nu*np.max(omega_n)': nu * np.max(omega_n)}
        df = pd.DataFrame(d, columns=['uni_rhot', 'nu*np.max(omega_n)'])
        df.to_csv('0nu_ei_smooth.csv', index=False)

        plt.clf()
        #plt.title('mode number finder')
        plt.xlabel('r/a')
        plt.ylabel('omega*, kHz')
        plt.plot(uni_rhot, mtmFreq, label='omega*p')
        plt.plot(uni_rhot, omega_n, label='omega*n')
        plt.axvline(uni_rhot[np.argmax(mtmFreq)],
                    color='red',
                    alpha=1.,
                    label='peak of omega*p')
        plt.axvline(uni_rhot[np.argmax(omega_n)],
                    color='green',
                    alpha=1.,
                    label='peak of omega*n')
        plt.plot(uni_rhot, rhoref_temp, color='purple', label='rhoref')
        plt.legend()
        plt.show()

        print("rho i for peak of omega*p: " +
              str(rhoref_temp[np.argmax(mtmFreq)]))
        print("rho i for peak of omega*n: " +
              str(rhoref_temp[np.argmax(omega_n)]))

        plt.clf()
        plt.xlabel('r/a')
        plt.ylabel('eta')
        plt.plot(uni_rhot, eta, label='eta')
        plt.show()

        plt.clf()
        #plt.title('mode number finder')
        plt.xlabel('r/a')
        plt.ylabel('omega*(Lab), kHz')
        plt.plot(uni_rhot, omega, label='omega*(Lab)')
        plt.show()

        plt.clf()
        plt.xlabel('r/a')
        plt.ylabel('eta')
        plt.plot(uni_rhot, eta, label='eta')
        plt.show()

        plt.clf()
        plt.xlabel('r/a')
        plt.ylabel('shat')
        plt.plot(uni_rhot, shat, label='shat')
        plt.show()

        plt.clf()
        plt.xlabel('r/a')
        plt.ylabel('beta')
        plt.plot(uni_rhot, beta, label='beta')
        plt.show()

        plt.clf()
        plt.xlabel('r/a')
        plt.ylabel('ky rhoi')
        plt.plot(uni_rhot, ky, label='ky')
        plt.show()

    mean_rho, xstar = omega_gaussian_fit(uni_rhot, mtmFreq,
                                         rhoref * np.sqrt(2.), Lref, path,
                                         profile_name, plot)

    if abs(mean_rho) + abs(xstar) < 0.0001:
        quit()

    if output_csv == True:
        with open('profile_output.csv', 'w') as csvfile:
            data = csv.writer(csvfile, delimiter=',')
            data.writerow([
                'x/a', 'nu_ei(kHz)', 'omega*n(kHz)', 'omega* plasma(kHz)',
                'Doppler shift(kHz)', 'nu/omega*n', 'eta', 'shat', 'beta',
                'ky rhoi(for n=1)'
            ])
            for i in range(len(uni_rhot)):
                data.writerow([
                    uni_rhot[i], coll_ei[i], omega_n[i], mtmFreq[i],
                    omegaDoppler[i], nu[i], eta[i], shat[i], beta[i], ky[i]
                ])
        csvfile.close()

    return uni_rhot, nu, eta, shat, beta, ky, q, mtmFreq, omegaDoppler, omega_n, omega_n_GENE, xstar, Lref, R_ref, rhoref