def plotcontour(traceJ, timegap, eta, imagename, converged):
    plt.ion()
    pltfig = plt.figure()

    #create a mesh using numpy
    T0, T1 = np.mgrid[0:2:50j, -1:1:50j]
    mesh = np.c_[T0.flatten(), T1.flatten()]

    reshapevalue = T0.shape

    Jvalue = (np.array([J(point) for point in mesh]).reshape(reshapevalue))

    plt.xlabel(r'$\theta 0$')
    plt.ylabel(r'$\theta 1$')

    plt.contour(T0, T1, Jvalue, cmap=cm.RdBu_r)

    plt.title("Contour Plot (eta = " + str(eta) + ")")
    plt.show()
    i = 0
    for value in traceJ:
        i += 1
        plt.plot([value[0]], [value[1]], color='b', marker='x', markersize=2)
        if (timegap > 0.0):
            plt.pause(timegap)
        if (not converged and i > 99):
            break

    save_plots(plt, imagename)
    plt.close()
def plotlinearboundary(mu, sigma, show=True):

    sigma_inverse = la.pinv(sigma)

    # parameters of line equation : Ax = B

    tempmu = np.transpose(mu[0] - mu[1])

    A = 2 * tempmu @ sigma_inverse

    B = np.transpose(mu[0]) @ sigma_inverse @ mu[0] - np.transpose(
        mu[1]) @ sigma_inverse @ mu[1] - 2 * np.log(len(canada) / len(alaska))

    # plot data points
    plt.scatter(alaska[:, 0], alaska[:, 1], marker='o', color='b')
    plt.scatter(canada[:, 0], canada[:, 1], marker='x', color='r')
    classalaska = plotpatches.Patch(color='b', label="Alaska")
    classcanada = plotpatches.Patch(color='r', label="Canada")

    # plotting line
    x0 = x[:, 0]
    x1 = x[:, 1]
    x1 = (B - A[0] * x0) / (A[1])
    if (show):
        line, = plt.plot(x0, x1, color="g", label="Decision Boundary")

        plt.legend(handles=[classalaska, classcanada, line])
        plt.xlabel(r'Feature 0 ($X_0)$')
        plt.ylabel(r'Feature 1 ($X_1)$')

        plt.title("Linear decision boundary")
        save_plots(plt, "ques4_part(c).png")
        plt.show()
    return x0, x1
def plotmesh(traceJ, timegap):

    plt.ion()
    pltfig = plt.figure()

    #create a mesh using numpy
    T0, T1 = np.mgrid[0:2:50j, -1:1:50j]
    xt = T0.flatten()
    yt = T1.flatten()
    mesh = np.c_[xt, yt]

    #meshplot = pltfig.add_subplot(111, projection = '3d')
    meshplot = pltfig.gca(projection='3d')

    #compute Jvalues for the grid according to our mesh points
    Jvalue = (np.array([J(point) for point in mesh]).reshape(50, 50))

    meshplot.set_xlabel(r'$\theta 0$', labelpad=15)
    meshplot.set_ylabel(r'$\theta 1$', labelpad=15)
    meshplot.set_zlabel(r'$J(\theta)$', labelpad=15)

    meshplot.plot_surface(T0, T1, Jvalue, cmap=cm.RdBu_r)

    plt.show()
    for value in traceJ:
        meshplot.plot([value[0]], [value[1]], [value[2]],
                      color='b',
                      marker='x',
                      markersize=2)
        if (timegap > 0.0):
            plt.pause(timegap)

    save_plots(plt, "ques_1c.png")
    plt.close()
Пример #4
0
def plotting(theta):
    def colorslist():
        colors = []
        for cls in y:
            if cls:
                colors.append("r")
            else:
                colors.append("b")
        return colors

    color = colorslist()
    plt.scatter(x[:, 1], x[:, 2], c=color)

    # finding x2 value using line equation --> x2 = (-theta0 -theta1 x1) / theta2 for each x
    yy = []
    for xi in x:
        value = (-theta[0] - theta[1] * xi[1]) / theta[2]
        yy.append(value)
    cls0 = plotpatches.Patch(color='blue', label='Class 0')
    cls1 = plotpatches.Patch(color='red', label='Class 1')

    line, = plt.plot(x[:, 1], yy, 'g', label="Decision Boundary")

    plt.xlabel(r'Feature 0 ($X_0)$')
    plt.ylabel(r'Feature 1 ($X_1)$')

    plt.legend(handles=[cls0, cls1, line])

    save_plots(plt, "ques3_b.png")
    plt.show()
def weightedregression(tau, imagename):

    #generating points for plot
    maxx = np.amax(x[:, 1])
    minx = np.amin(x[:, 1])
    pointsforplot = np.linspace(minx, maxx)

    result = np.array([])

    for point in pointsforplot:
        w = np.exp(-1 * ((point - x[:, 1])**2 / (2 * tau**2)))
        W = np.diag(w)
        transposex = np.transpose(x)
        inversematrix = la.inv(transposex @ W @ x)
        theta = inversematrix @ transposex @ W @ y
        result = np.append(result, [theta @ np.array([1, point])])

    # plot of the result obtained from weighted regression

    line, = plt.plot(pointsforplot,
                     result,
                     'b',
                     label="Hypothesis for " + r'$\tau =  ' + str(tau))
    data, = plt.plot(x[:, 1], y, 'rx', label="Data")
    plt.xlabel("input x")
    plt.ylabel("output y")

    plt.legend(handles=[data, line])

    plt.title("for value tau = " + str(tau))

    save_plots(plt, imagename)
    plt.show()
def plotdata():

    plt.scatter(alaska[:, 0], alaska[:, 1], marker='o', color='b')
    plt.scatter(canada[:, 0], canada[:, 1], marker='x', color='r')
    classalaska = plotpatches.Patch(color='b', label="Alaska")
    classcanada = plotpatches.Patch(color='r', label="Canada")
    plt.title("Plot of training data")
    #plt.legend(handles=[classalaska, classcanada])
    plt.legend(handles=[classalaska, classcanada])
    save_plots(plt, "ques4_part(b).png")
    plt.show()
def plotdata(theta):
    data, = plt.plot(x[:, 1], y, 'rx', label="Data")
    hy = list(map(lambda y: theta @ y, x))
    plt.xlabel("Acidity of Wine (Normalised) ")
    plt.ylabel("Density Of Wine ")

    line, = plt.plot(x[:, 1], hy, "b", label="Hypothesis")

    plt.legend(handles=[data, line])

    save_plots(plt, "ques_1b.png")
    plt.show()
def plotquadgda(mu, sigma, line0, line1):
    print("Part E")
    # plot data points
    plt.scatter(alaska[:, 0], alaska[:, 1], marker='o', color='b')
    plt.scatter(canada[:, 0], canada[:, 1], marker='x', color='r')
    classalaska = plotpatches.Patch(color='b', label="Alaska")
    classcanada = plotpatches.Patch(color='r', label="Canada")

    # plotting line
    line, = plt.plot(line0, line1, color="g", label="Linear Decision Boundary")

    sigma_inverse0 = la.pinv(sigma[0])
    sigma_det0 = la.det(sigma[0])
    sigma_inverse1 = la.pinv(sigma[1])
    sigma_det1 = la.det(sigma[1])

    # computing parameters of equation x'Ax + BX + C = 0
    A = sigma_inverse0 - sigma_inverse1
    mu_transpose0 = np.transpose(mu[0])
    mu_transpose1 = np.transpose(mu[1])
    B = -2 * (mu_transpose0 @ sigma_inverse0 - mu_transpose1 @ sigma_inverse1)
    C = (mu_transpose0 @ sigma_inverse0 @ mu[0] -
         mu_transpose1 @ sigma_inverse1 @ mu[1] - 2 * np.log(
             (len(canada) / len(alaska)) * (sigma_det0 / sigma_det1)))

    #create a mesh using numpy
    T0, T1 = np.mgrid[-5:5:50j, -7.5:7.5:50j]
    xt = T0.flatten()
    yt = T1.flatten()
    mesh = np.c_[xt, yt]

    # quadratic boundary
    quadboundary = np.array([])
    for point in mesh:
        value = np.transpose(point) @ A @ point + B @ point + C
        quadboundary = np.append(quadboundary, [value])

    quadboundary = quadboundary.reshape(T0.shape)
    plt.contour(T0, T1, quadboundary, [0], colors="y")

    quadlabel = lines.Line2D(color='yellow',
                             label="quadratic decision boundary",
                             xdata=[],
                             ydata=[])

    plt.title("Quadratic Gaussian Discriminant analysis")
    plt.xlabel("Input Feature(x1)")
    plt.ylabel("Input Feature(x2)")

    plt.legend(handles=[classalaska, classcanada, line, quadlabel])
    save_plots(plt, "ques4_part(e).png")
    plt.show()
def unweightedregression():

    # computing theta using normal equation
    transposex = np.transpose(x)
    inversematrix = la.inv(transposex @ x)
    theta = inversematrix @ transposex @ y

    print("theta parameters : ", theta, "\n")
    hy = list(map(lambda y: theta @ y, x))

    line, = plt.plot(x[:, 1], hy, "b", label="Hypothesis")

    data, = plt.plot(x[:, 1], y, 'rx', label="Data")

    plt.legend(handles=[data, line])

    plt.xlabel("input x")
    plt.ylabel("output y")

    save_plots(plt, "ques_2a.png")
    plt.show()