Пример #1
0
def equilibrium_problem_with_h2o_co2_nacl_halite_dissolved_60C_300bar():
    """
    Build a problem with H2O, H+, Na+, Cl-, HCO3-, CO2(aq), CO3-- and 
    Halite at 60 °C and 300 bar 
    """
    database = Database("supcrt98.xml")

    editor = ChemicalEditor(database)
    aqueous = editor.addAqueousPhase(
        ["H2O(l)", "H+", "OH-", "Na+", "Cl-", "HCO3-", "CO2(aq)", "CO3--", "CO(aq)"]
    )
    aqueous.setActivityModelDrummondCO2()
    gaseous = editor.addGaseousPhase(["H2O(g)", "CO2(g)"])
    gaseous.setChemicalModelSpycherPruessEnnis()
    editor.addMineralPhase("Halite")

    system = ChemicalSystem(editor)

    problem = EquilibriumProblem(system)
    problem.add("H2O", 1, "kg")
    problem.add("CO2", 100, "g")
    problem.add("NaCl", 1, "mol")
    problem.setTemperature(60, "celsius")
    problem.setPressure(300, "bar")

    return (system, problem)
Пример #2
0
def test_equilibrium_CH4_CO2_H2S_liq_gas(temperature, pressure,
                                         num_regression):
    """
    This test checks the capability of solving a ternary mixture with
    @param Temperature
        temperature in Kelvin which will be used to compute equilibrium
    @param Pressure
        pressure in bar which will be used to compute equilibrium
    """

    db = Database("supcrt98.xml")

    editor = ChemicalEditor(db)

    eos_params = CubicEOSParams(
        phase_identification_method=PhaseIdentificationMethod.
        GibbsEnergyAndEquationOfStateMethod, )

    editor.addGaseousPhase(["CH4(g)", "H2S(g)",
                            "CO2(g)"]).setChemicalModelPengRobinson(eos_params)
    editor.addLiquidPhase(["CH4(liq)", "H2S(liq)", "CO2(liq)"
                           ]).setChemicalModelPengRobinson(eos_params)

    system = ChemicalSystem(editor)

    problem = EquilibriumProblem(system)

    problem.setTemperature(temperature, "K")
    problem.setPressure(pressure, "bar")
    problem.add("CH4(g)", 0.60, "mol")
    problem.add("H2S(g)", 0.35, "mol")
    problem.add("CO2(g)", 0.05, "mol")

    solver = EquilibriumSolver(problem.system())

    options = EquilibriumOptions()
    options.hessian = GibbsHessian.Exact
    options.nonlinear.max_iterations = 100
    options.optimum.max_iterations = 200
    options.optimum.ipnewton.step = StepMode.Conservative

    solver.setOptions(options)

    state = ChemicalState(system)

    result = solver.solve(state, problem)

    assert result.optimum.succeeded

    species_amount = {
        "CH4(g)": np.asarray([state.speciesAmount("CH4(g)")]),
        "H2S(g)": np.asarray([state.speciesAmount("H2S(g)")]),
        "CO2(g)": np.asarray([state.speciesAmount("CO2(g)")]),
        "CH4(liq)": np.asarray([state.speciesAmount("CH4(liq)")]),
        "H2S(liq)": np.asarray([state.speciesAmount("H2S(liq)")]),
        "CO2(liq)": np.asarray([state.speciesAmount("CO2(liq)")]),
    }

    num_regression.check(species_amount)
Пример #3
0
def equilibrium_problem_using_thermofun_aq17_database():
    """
    Build a problem using ThermoFun database aq17
    """

    database = thermofun.Database("databases/thermofun/aq17-thermofun.json")

    editor = ChemicalEditor(database)
    editor.setTemperatures([500.0], "celsius")
    editor.setPressures([3000.0], "bar")

    editor.addAqueousPhase([
        "Al(OH)2+", "Al(OH)3@", "Al(OH)4-", "Al+3", "AlH3SiO4+2", "AlOH+2",
        "Ca+2", "CaCO3@", "CaCl+", "CaCl2@", "CaHCO3+", "CaHSiO3+", "CaOH+",
        "CaSiO3@", "K+", "KAlO2@", "KCl@", "KOH@", "KCO3-", "KHCO3@", "Mg+2",
        "MgCO3@", "MgCl+", "MgCl2@", "MgHCO3+", "MgHSiO3+", "MgOH+", "MgSiO3@",
        "Na+", "NaAl(OH)4@", "NaCO3-", "NaCl@", "NaHCO3@", "NaHSiO3@", "NaOH@",
        "HSiO3-", "SiO2@", "CO@", "CO2@", "CO3-2", "HCO3-", "CH4@", "Cl-",
        "HCl@", "H2@", "O2@", "OH-", "H+", "H2O@"
    ])

    editor.addMineralPhase("Albite")
    editor.addMineralPhase("Andalusite")
    editor.addMineralPhase("Calcite")
    editor.addMineralPhase("Corundum")
    editor.addMineralPhase("Diopside")
    editor.addMineralPhase("Dolomite")
    editor.addMineralPhase("Enstatite")
    editor.addMineralPhase("Grossular")
    editor.addMineralPhase("Margarite")
    editor.addMineralPhase("Microcline")
    editor.addMineralPhase("Muscovite")
    editor.addMineralPhase("Pargasite-Mg")
    editor.addMineralPhase("Phlogopite")
    editor.addMineralPhase("Quartz")
    editor.addMineralPhase("Sanidine")
    editor.addMineralPhase("Sillimanite")
    editor.addMineralPhase("Zoisite")

    system = ChemicalSystem(editor)

    problem = EquilibriumProblem(system)
    problem.add("H2O", 1000, "g")
    problem.add("CO2", 0.001, "g")
    problem.add("CaCO3", 1, "g")
    problem.add("MgSiO3", 1, "g")
    problem.add("NaCl", 5, "g")
    problem.add("NaAlSi3O8", 37, "g")
    problem.add("KAl3Si3O10(OH)2", 13, "g")
    problem.add("SiO2", 30, "g")
    problem.add("KAlSi3O8", 20, "g")
    problem.setTemperature(500.0, "celsius")
    problem.setPressure(3000.0, "bar")

    return (system, problem)
Пример #4
0
def brine_co2_path():
    editor = ChemicalEditor()
    editor.addAqueousPhaseWithElementsOf("H2O NaCl CaCO3 MgCO3")
    editor.addGaseousPhase(["H2O(g)", "CO2(g)"])
    editor.addMineralPhase("Calcite")
    editor.addMineralPhase("Magnesite")
    editor.addMineralPhase("Dolomite")
    editor.addMineralPhase("Halite")

    editor.addMineralReaction("Calcite") \
        .setEquation("Calcite = Ca++ + CO3--") \
        .addMechanism("logk = -5.81 mol/(m2*s); Ea = 23.5 kJ/mol") \
        .addMechanism("logk = -0.30 mol/(m2*s); Ea = 14.4 kJ/mol; a[H+] = 1.0") \
        .setSpecificSurfaceArea(10, "cm2/g")

    editor.addMineralReaction("Magnesite") \
        .setEquation("Magnesite = Mg++ + CO3--") \
        .addMechanism("logk = -9.34 mol/(m2*s); Ea = 23.5 kJ/mol") \
        .addMechanism("logk = -6.38 mol/(m2*s); Ea = 14.4 kJ/mol; a[H+] = 1.0") \
        .setSpecificSurfaceArea(10, "cm2/g")

    editor.addMineralReaction("Dolomite") \
        .setEquation("Dolomite = Ca++ + Mg++ + 2*CO3--") \
        .addMechanism("logk = -7.53 mol/(m2*s); Ea = 52.2 kJ/mol") \
        .addMechanism("logk = -3.19 mol/(m2*s); Ea = 36.1 kJ/mol; a[H+] = 0.5") \
        .setSpecificSurfaceArea(10, "cm2/g")

    system = ChemicalSystem(editor)
    reactions = ReactionSystem(editor)

    partition = Partition(system)
    partition.setKineticSpecies(["Calcite", "Magnesite", "Dolomite"])

    problem = EquilibriumProblem(system)
    problem.setPartition(partition)
    problem.setTemperature(60, "celsius")
    problem.setPressure(100, "bar")
    problem.add("H2O", 1, "kg")
    problem.add("NaCl", 0.5, "mol")
    problem.add("CO2", 1, "mol")

    state = equilibrate(problem)

    state.setSpeciesMass("Calcite", 100, "g")
    state.setSpeciesMass("Dolomite", 50, "g")

    path = KineticPath(reactions)
    path.setPartition(partition)

    return path, state
Пример #5
0
def test_equilibrium_H2S_liq_gas(temperature, pressure, num_regression):
    db = Database("supcrt98.xml")

    editor = ChemicalEditor(db)

    eos_params = CubicEOSParams(
        model=CubicEOSModel.PengRobinson,
        phase_identification_method=PhaseIdentificationMethod.
        GibbsEnergyAndEquationOfStateMethod,
    )

    editor.addGaseousPhase(["H2S(g)"]).setChemicalModelCubicEOS(eos_params)
    editor.addLiquidPhase(["H2S(liq)"]).setChemicalModelCubicEOS(eos_params)

    system = ChemicalSystem(editor)

    problem = EquilibriumProblem(system)

    problem.setTemperature(temperature, "K")
    problem.setPressure(pressure, "Pa")
    problem.add("H2S(g)", 1.0, "mol")

    solver = EquilibriumSolver(problem.system())

    options = EquilibriumOptions()
    options.hessian = GibbsHessian.Exact
    options.nonlinear.max_iterations = 100
    options.optimum.max_iterations = 200
    options.optimum.ipnewton.step = StepMode.Conservative
    options.optimum.tolerance = 1e-17
    solver.setOptions(options)

    state = ChemicalState(system)

    result = solver.solve(state, problem)

    assert result.optimum.succeeded

    species_amounts = {
        "H2S(g)": np.asarray([state.speciesAmount("H2S(g)")]),
        "H2S(liq)": np.asarray([state.speciesAmount("H2S(liq)")]),
    }

    num_regression.check(species_amounts)
Пример #6
0
def equilibrium_problem_with_h2o_co2_nacl_halite_60C_300bar():
    """
    Build a problem with 1 kg of H2O, 100 g of CO2 and 0.1 mol of NaCl 
    at 60 °C and 300 bar 
    """
    database = Database("supcrt98.xml")

    editor = ChemicalEditor(database)
    editor.addAqueousPhase("H2O NaCl CO2")
    editor.addGaseousPhase(["H2O(g)", "CO2(g)"])
    editor.addMineralPhase("Halite")

    system = ChemicalSystem(editor)

    problem = EquilibriumProblem(system)
    problem.add("H2O", 1, "kg")
    problem.add("CO2", 100, "g")
    problem.add("NaCl", 0.1, "mol")
    problem.setTemperature(60, "celsius")
    problem.setPressure(300, "bar")

    return (system, problem)
Пример #7
0
def test_different_results(state_regression):
    from reaktoro import ChemicalEditor, ChemicalState, ChemicalSystem, Database, EquilibriumProblem, EquilibriumSolver, Partition

    database = Database('supcrt07.xml')
    editor = ChemicalEditor(database)

    aqueous_elements = ["C", "Ca", "Cl", "Fe", "H", "Na", "O", "S", "Ba", "Sr"]
    aqueous_phase = editor.addAqueousPhaseWithElements(aqueous_elements)
    assert aqueous_phase.name() == 'Aqueous'

    mineral_species = [
        "Anhydrite", "Barite", "Calcite", "Celestite", "Siderite", "Pyrrhotite"
    ]
    for mineral in mineral_species:
        editor.addMineralPhase(mineral)

    gaseous_species = ["CO2(g)", "H2S(g)", "CH4(g)"]
    editor.addGaseousPhase(gaseous_species)

    chemical_system = ChemicalSystem(editor)

    element_index = {
        e.name(): index
        for index, e in enumerate(chemical_system.elements())
    }
    species_index = {
        s.name(): index
        for index, s in enumerate(chemical_system.species())
    }
    phase_index = {
        p.name(): index
        for index, p in enumerate(chemical_system.phases())
    }

    reaktoro_case = get_reaktoro_case()

    equilibrium_problem = EquilibriumProblem(chemical_system)
    equilibrium_problem.setTemperature(reaktoro_case.temperature_in_K)
    equilibrium_problem.setPressure(reaktoro_case.pressure_in_Pa)

    partition = Partition(chemical_system)
    partition.setInertPhases([phase_index['Gaseous']])

    equilibrium_problem.setPartition(partition)

    chemical_state = ChemicalState(chemical_system)
    for name, index, molar_amount in reaktoro_case.species_amounts:
        assert index == species_index[name]
        chemical_state.setSpeciesAmount(index, molar_amount)

    equilibrium_problem.addState(chemical_state)

    solver = EquilibriumSolver(chemical_system)
    solver.setPartition(partition)

    result = solver.solve(chemical_state, equilibrium_problem)

    assert result.optimum.succeeded

    state_regression.check(chemical_state,
                           default_tol=dict(atol=1e-5, rtol=1e-14))
Пример #8
0
def test_equilibrium_CH4_H2S_CO2_H2O_liq_gas_aq(temperature, pressure,
                                                num_regression):
    """
    This test checks the capability of solving a system that has CH4, H2S,
    CO2, H2O with
    @param Temperature
        temperature in Kelvin which will be used to compute equilibrium
    @param Pressure
        pressure in bar which will be used to compute equilibrium
    """

    db = Database("supcrt98.xml")

    editor = ChemicalEditor(db)

    eos_params = CubicEOSParams(
        phase_identification_method=PhaseIdentificationMethod.
        GibbsEnergyAndEquationOfStateMethod, )

    editor.addAqueousPhase(["CO2(aq)", "H2S(aq)", "H2O(l)"])
    editor.addGaseousPhase(["CH4(g)", "CO2(g)", "H2S(g)",
                            "H2O(g)"]).setChemicalModelCubicEOS(eos_params)
    editor.addLiquidPhase(["CH4(liq)", "CO2(liq)", "H2S(liq)",
                           "H2O(liq)"]).setChemicalModelCubicEOS(eos_params)

    system = ChemicalSystem(editor)

    problem = EquilibriumProblem(system)

    problem.setTemperature(temperature, "K")
    problem.setPressure(pressure, "bar")
    problem.add("H2O(g)", 0.50, "mol")
    problem.add("CO2(g)", 0.05, "mol")
    problem.add("H2S(g)", 0.40, "mol")
    problem.add("CH4(g)", 0.05, "mol")

    # This is a workaround to avoid an Eigen assertion when in Debug:
    # `DenseBase::resize() does not actually allow to resize.`, triggered by `y(iee) = optimum_state.y * RT;`
    problem.add("Z", 1e-15, "mol")

    solver = EquilibriumSolver(problem.system())

    options = EquilibriumOptions()
    options.hessian = GibbsHessian.Exact
    options.nonlinear.max_iterations = 100
    options.optimum.max_iterations = 200
    options.optimum.ipnewton.step = StepMode.Conservative
    options.optimum.tolerance = 1e-14
    solver.setOptions(options)

    state = ChemicalState(system)

    result = solver.solve(state, problem)

    assert result.optimum.succeeded

    species_amount = {
        "CO2(aq)": np.asarray([state.speciesAmount("CO2(g)")]),
        "H2S(aq)": np.asarray([state.speciesAmount("H2S(aq)")]),
        "H2O(l)": np.asarray([state.speciesAmount("H2O(l)")]),
        "CH4(g)": np.asarray([state.speciesAmount("CH4(g)")]),
        "CO2(g)": np.asarray([state.speciesAmount("CO2(g)")]),
        "H2S(g)": np.asarray([state.speciesAmount("H2S(g)")]),
        "H2O(g)": np.asarray([state.speciesAmount("H2O(g)")]),
        "CH4(liq)": np.asarray([state.speciesAmount("CH4(liq)")]),
        "CO2(liq)": np.asarray([state.speciesAmount("CO2(liq)")]),
        "H2S(liq)": np.asarray([state.speciesAmount("H2S(liq)")]),
        "H2O(liq)": np.asarray([state.speciesAmount("H2O(liq)")]),
    }

    num_regression.check(species_amount)