def create_configs(classifier: str, include_centercrop: bool = False): """Create the YAML configuration files for all registered models for a classifier. Args: classifier (str): the classifier (either `"occupancy_classifier"` or `"piece_classifier"`) include_centercrop (bool, optional): whether to create two configs per model, one including center crop and one not. Defaults to False. """ config_dir = URI("config://") / classifier logger.info(f"Removing YAML files from {config_dir}.") for f in config_dir.glob("*.yaml"): if not f.name.startswith("_"): f.unlink() for name, model in MODELS_REGISTRY[classifier.upper()].items(): for center_crop in ({True, False} if include_centercrop else {False}): config_file = config_dir / \ (name + ("_centercrop" if center_crop else "") + ".yaml") logging.info(f"Writing configuration file {config_file}") size = model.input_size C = CN() override_base = f"config://{classifier}/_base_override_{name}.yaml" if URI(override_base).exists(): C._BASE_ = override_base else: suffix = "_pretrained" if model.pretrained else "" C._BASE_ = f"config://{classifier}/_base{suffix}.yaml" C.DATASET = CN() C.DATASET.TRANSFORMS = CN() C.DATASET.TRANSFORMS.CENTER_CROP = (50, 50) \ if center_crop else None C.DATASET.TRANSFORMS.RESIZE = size C.TRAINING = CN() C.TRAINING.MODEL = CN() C.TRAINING.MODEL.REGISTRY = classifier.upper() C.TRAINING.MODEL.NAME = name with config_file.open("w") as f: C.dump(stream=f)
def train_model(cfg: CN, run_dir: Path, model: torch.nn.Module, is_inception: bool = False, model_name: str = None, eval_on_train: bool = False) -> nn.Module: """Train a model that has already been loaded. Args: cfg (CN): the configuration object describing the model, dataset, etc. run_dir (Path): where to write tensorboard files, the active YAML file, and the chosen weights model (torch.nn.Module): the loaded model is_inception (bool, optional): whether the model is InceptionV3. Defaults to False. model_name (str, optional): the name of the model (by default the last component of the run directory). Defaults to None. eval_on_train (bool, optional): whether to evaluate on the training set. Defaults to False. Returns: nn.Module: the trained model """ logger.info(f"Starting training in {run_dir}") if not model_name: model_name = run_dir.name # Create folder if run_dir.exists(): logger.warning( f"The folder {run_dir} already exists and will be overwritten by this run" ) shutil.rmtree(run_dir, ignore_errors=True) run_dir.mkdir(parents=True, exist_ok=True) # Store config with (run_dir / f"{model_name}.yaml").open("w") as f: cfg.dump(stream=f) # Move model to device device(model) best_weights, best_accuracy, best_step = copy.deepcopy( model.state_dict()), 0., 0 criterion = nn.CrossEntropyLoss() modes = {Datasets.TRAIN, Datasets.VAL} if eval_on_train: dataset = build_dataset(cfg, Datasets.TRAIN) datasets = {mode: dataset for mode in modes} else: datasets = {mode: build_dataset(cfg, mode) for mode in modes} classes = datasets[Datasets.TRAIN].classes loader = { mode: build_data_loader(cfg, datasets[mode], mode) for mode in modes } writer = {mode: SummaryWriter(run_dir / mode.value) for mode in modes} aggregator = {mode: StatsAggregator(classes) for mode in modes} def log(step: int, loss: float, mode: Datasets): if mode == Datasets.TRAIN: logger.info(f"Step {step:5d}: loss {loss:.3f}") w, agg = (x[mode] for x in (writer, aggregator)) w.add_scalar("Loss", loss, step) w.add_scalar("Accuracy", agg.accuracy(), step) for c in classes: w.add_scalar(f"Precision/{c}", agg.precision(c), step) w.add_scalar(f"Recall/{c}", agg.recall(c), step) w.add_scalar(f"F1 score/{c}", agg.f1_score(c), step) def perform_iteration(data: typing.Tuple[torch.Tensor, torch.Tensor], mode: Datasets): inputs, labels = map(device, data) with torch.set_grad_enabled(mode == Datasets.TRAIN): # Reset gradients optimizer.zero_grad() # Forward pass and compute loss if is_inception and mode == Datasets.TRAIN: # Special case for inception models outputs, auxiliary_outputs = model(inputs) loss1 = criterion(outputs, labels) loss2 = criterion(auxiliary_outputs, labels) loss = loss1 + 0.4 * loss2 else: outputs = model(inputs) loss = criterion(outputs, labels) if mode == Datasets.TRAIN: loss.backward() with torch.no_grad(): aggregator[mode].add_batch(outputs, labels) # Perform optimisation if mode == Datasets.TRAIN: optimizer.step() # Return return loss.item() step = 0 log_every_n = 100 # Ensure we're in training mode model.train() # Loop over training phases for phase in cfg.TRAINING.PHASES: for p in model.parameters(): p.requires_grad = False parameters = list(model.parameters()) if phase.PARAMS == "all" \ else model.params[phase.PARAMS] for p in parameters: p.requires_grad = True optimizer = build_optimizer_from_config(phase.OPTIMIZER, parameters) # Loop over epochs (passes over the whole dataset) for epoch in range(phase.EPOCHS): aggregator[Datasets.TRAIN].reset() # Iterate the training set losses = [] for i, data in enumerate(loader[Datasets.TRAIN]): # Perform training iteration losses.append(perform_iteration(data, mode=Datasets.TRAIN)) if step % log_every_n == 0: loss = np.mean(list(losses)) log(step, loss, Datasets.TRAIN) aggregator[Datasets.TRAIN].reset() losses = [] # Validate entire validation dataset model.eval() aggregator[Datasets.VAL].reset() # Iterate entire val dataset perform_val_iteration = functools.partial( perform_iteration, mode=Datasets.VAL) val_losses = map(perform_val_iteration, loader[Datasets.VAL]) # Gather losses and log val_loss = np.mean(list(val_losses)) log(step, val_loss, Datasets.VAL) model.train() # Save weights if we get a better performance accuracy = aggregator[Datasets.VAL].accuracy() if accuracy >= best_accuracy: best_accuracy = accuracy best_weights = copy.deepcopy(model.state_dict()) best_step = step # Get ready for next step step += 1 # Clean up for w in writer.values(): w.flush() w.close() logger.info("Finished training") logger.info( f"Restoring best weight state (step {best_step} with validation accuracy of {best_accuracy})" ) model.load_state_dict(best_weights) torch.save(model, run_dir / f"{model_name}.pt") with (run_dir / f"{model_name}.txt").open("w") as f: f.write(f"exported at step: {best_step}") return model