def test_low_memory_seed(): df_a = pd.DataFrame(np.random.rand(1000000, 2)) df_b = pd.DataFrame(np.random.rand(1000000, 2)) pairs1 = Random(10, random_state=100, replace=False).index(df_a, df_b) pairs2 = Random(10, random_state=100, replace=False).index(df_a, df_b) pdt.assert_index_equal(pairs1, pairs2)
def get_test_algorithms(): """Return list of algorithms""" return [ Full(), Block(on='var_arange'), SortedNeighbourhood(on='var_arange'), Random(10, random_state=100, replace=True), Random(10, random_state=100, replace=False) ]
def test_low_memory(): df_a = pd.DataFrame(np.random.rand(1000000, 2)) df_b = pd.DataFrame(np.random.rand(1000000, 2)) pairs = Random(10, random_state=100, replace=False).index(df_a, df_b) assert is_pandas_2d_multiindex(pairs) assert len(pairs) == 10
def test_random_seed(self): """Random: test seeding random algorithm""" # TEST IDENTICAL index_cl1 = Random(n=1000, random_state=100) index_cl2 = Random(n=1000, random_state=100) index_cl3 = Random(n=1000, random_state=101) pairs1 = index_cl1.index((self.a, self.b)) pairs2 = index_cl2.index((self.a, self.b)) pairs3 = index_cl3.index((self.a, self.b)) # are pairs1 and pairs2 indentical? ptm.assert_index_equal(pairs1, pairs2) # are pairs1 and pairs3 not indentical? # numpy workaround assert not np.array_equal(pairs1.values, pairs3.values)
def random(self, *args, **kwargs): """Add a random index. Shortcut of :class:`recordlinkage.index.Random`:: from recordlinkage.index import Random indexer = recordlinkage.Index() indexer.add(Random()) """ indexer = Random() self.add(indexer) return self
def test_random_with_replace(self): """Random: test random indexing with replacement""" # situation 1: linking index_cl1 = Random(n=1000, replace=True, random_state=100) pairs1 = index_cl1.index((self.a, self.b)) assert len(pairs1) == 1000 assert not pairs1.is_unique # situation 2: dedup index_cl2 = Random(n=1000, replace=True, random_state=101) pairs2 = index_cl2.index(self.a) assert len(pairs2) == 1000 assert not pairs2.is_unique
def test_random_with_replace(self): """Random: test random indexing with replacement""" # situation 1: linking index_cl1 = Random(n=1000, replace=True, random_state=100) pairs1 = index_cl1.index((self.a, self.b)) self.assertEqual(len(pairs1), 1000) self.assertFalse(pairs1.is_unique) # situation 2: dedup index_cl2 = Random(n=1000, replace=True, random_state=101) pairs2 = index_cl2.index(self.a) self.assertEqual(len(pairs2), 1000) self.assertFalse(pairs2.is_unique)
class TestIndexAlgorithmApi(TestData): """General unittest for the indexing API.""" @parameterized.expand(TEST_INDEXATION_OBJECTS) def test_repr(self, index_class): index_str = str(index_class) index_repr = repr(index_class) self.assertEqual(index_str, index_repr) start_str = '<{}'.format(index_class.__class__.__name__) self.assertTrue(index_str.startswith(start_str)) @parameterized.expand(TEST_INDEXATION_OBJECTS) def test_arguments(self, index_class): """Test the index method arguments""" # The following should work index_class.index(self.a) index_class.index(self.a, self.b) index_class.index((self.a)) index_class.index([self.a]) index_class.index((self.a, self.b)) index_class.index([self.a, self.b]) index_class.index(x=(self.a, self.b)) def test_iterative(self): """Test the iterative behaviour.""" # SINGLE STEP index_class = Full() pairs = index_class.index((self.a, self.b)) pairs = pd.DataFrame(index=pairs).sort_index() # MULTI STEP index_class = Full() pairs1 = index_class.index((self.a[0:50], self.b)) pairs2 = index_class.index((self.a[50:100], self.b)) pairs_split = pairs1.append(pairs2) pairs_split = pd.DataFrame(index=pairs_split).sort_index() ptm.assert_frame_equal(pairs, pairs_split) # note possible to sort MultiIndex, so made a frame out of it. @parameterized.expand(TEST_INDEXATION_OBJECTS) def test_empty_imput_dataframes(self, index_class): """Empty DataFrames""" # make an empty dataframe with the columns of self.a and self.b df_a = pd.DataFrame(columns=self.a.columns.tolist()) df_b = pd.DataFrame(columns=self.b.columns.tolist()) from recordlinkage.index import Random if not isinstance(index_class, Random): # make an index pairs = index_class.index((df_a, df_b)) # check if the MultiIndex has length 0 self.assertIsInstance(pairs, pd.MultiIndex) self.assertEqual(len(pairs), 0) else: with self.assertRaises(ValueError): index_class.index((df_a, df_b)) @parameterized.expand(TEST_INDEXATION_OBJECTS) def test_error_handling(self, index_class): """Test error handling on non-unique index.""" # make a non_unique index df_a = self.a.rename(index={self.a.index[1]: self.a.index[0]}, inplace=False) with self.assertRaises(ValueError): index_class.index(df_a) @parameterized.expand([ param(Full()), param(Block(on='var_arange')), param(SortedNeighbourhood(on='var_arange')), param(Random(10, random_state=100, replace=True)), param(Random(10, random_state=100, replace=False)) ]) def test_index_names_dedup(self, index_class): index_names = ['dedup', None, 'index', int(1)] expected = [ ['dedup_1', 'dedup_2'], [None, None], ['index_1', 'index_2'], ['1_1', '1_2'], ] for i, name in enumerate(index_names): index_A = pd.Index(self.a.index).rename(name) df_A = pd.DataFrame(self.a, index=index_A) pairs = index_class.index((df_A)) self.assertEqual(pairs.names, expected[i]) self.assertEqual(df_A.index.name, name) @parameterized.expand([ param(Full()), param(Block(on='var_arange')), param(SortedNeighbourhood(on='var_arange')), param(Random(10, random_state=100, replace=True)), param(Random(10, random_state=100, replace=False)) ]) def test_duplicated_index_names_dedup(self, index_class): # make an index for each dataframe with a new index name index_a = pd.Index(self.a.index, name='index') df_a = pd.DataFrame(self.a, index=index_a) # make the index pairs = index_class.index(df_a) self.assertEqual(pairs.names, ['index_1', 'index_2']) # check for inplace editing (not the intention) self.assertEqual(df_a.index.name, 'index') # make the index index_class.suffixes = ['_a', '_b'] pairs = index_class.index(df_a) self.assertEqual(pairs.names, ['index_a', 'index_b']) # check for inplace editing (not the intention) self.assertEqual(df_a.index.name, 'index') @parameterized.expand([ param(Full()), param(Block(on='var_arange')), param(SortedNeighbourhood(on='var_arange')), param(Random(10, random_state=100, replace=True)), param(Random(10, random_state=100, replace=False)) ]) def test_index_names_link(self, index_class): # tuples with the name of the first and second index index_names = [('index1', 'index2'), ('index1', None), (None, 'index2'), (None, None), (10, 'index2'), (10, 11)] for name_a, name_b in index_names: # make an index for each dataframe with a new index name index_a = pd.Index(self.a.index, name=name_a) df_a = pd.DataFrame(self.a, index=index_a) index_b = pd.Index(self.b.index, name=name_b) df_b = pd.DataFrame(self.b, index=index_b) pairs = index_class.index((df_a, df_b)) self.assertEqual(pairs.names, [name_a, name_b]) # check for inplace editing (not the intention) self.assertEqual(df_a.index.name, name_a) self.assertEqual(df_b.index.name, name_b) @parameterized.expand([ param(Full()), param(Block(on='var_arange')), param(SortedNeighbourhood(on='var_arange')), param(Random(10, random_state=100, replace=True)), param(Random(10, random_state=100, replace=False)) ]) def test_duplicated_index_names_link(self, index_class): # make an index for each dataframe with a new index name index_a = pd.Index(self.a.index, name='index') df_a = pd.DataFrame(self.a, index=index_a) index_b = pd.Index(self.b.index, name='index') df_b = pd.DataFrame(self.b, index=index_b) # make the index pairs = index_class.index((df_a, df_b)) self.assertEqual(pairs.names, ['index_1', 'index_2']) # check for inplace editing (not the intention) self.assertEqual(df_a.index.name, 'index') self.assertEqual(df_b.index.name, 'index') # make the index index_class.suffixes = ['_a', '_b'] pairs = index_class.index((df_a, df_b)) self.assertEqual(pairs.names, ['index_a', 'index_b']) # check for inplace editing (not the intention) self.assertEqual(df_a.index.name, 'index') self.assertEqual(df_b.index.name, 'index') @parameterized.expand(TEST_INDEXATION_OBJECTS) def test_pickle(self, index_class): """Test if it is possible to pickle the class.""" pickle_path = os.path.join(self.test_dir, 'pickle_compare_obj.pickle') # pickle before indexing pickle.dump(index_class, open(pickle_path, 'wb')) # compute the record pairs index_class.index(self.a, self.b) # pickle after indexing pickle.dump(index_class, open(pickle_path, 'wb'))
import shutil import pickle import numpy as np import pandas as pd import pandas.util.testing as ptm from parameterized import parameterized, param import recordlinkage from recordlinkage.index import Full, Block, SortedNeighbourhood, Random TEST_INDEXATION_OBJECTS = [ param(Full()), param(Block(on='var_arange')), param(SortedNeighbourhood(on='var_arange')), param(Random(10, random_state=100, replace=True)), param(Random(10, random_state=100, replace=False)) ] class TestData(unittest.TestCase): """Unittest object to setup test data.""" @classmethod def setUpClass(cls): n_a = 100 n_b = 150 cls.index_a = ['rec_a_%s' % i for i in range(0, n_a)] cls.index_b = ['rec_b_%s' % i for i in range(0, n_b)]