Пример #1
0
    def _compute_is_class_correctly_detected_in_image(self,
                                                      detected_boxes,
                                                      detected_scores,
                                                      groundtruth_boxes,
                                                      detected_masks=None,
                                                      groundtruth_masks=None):
        """Compute CorLoc score for a single class.

    Args:
      detected_boxes: A numpy array of shape [N, 4] representing detected box
          coordinates
      detected_scores: A 1-d numpy array of length N representing classification
          score
      groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth
          box coordinates
      detected_masks: (optional) A np.uint8 numpy array of shape
        [N, height, width]. If not None, the scores will be computed based
        on masks.
      groundtruth_masks: (optional) A np.uint8 numpy array of shape
        [M, height, width].

    Returns:
      is_class_correctly_detected_in_image: An integer 1 or 0 denoting whether a
          class is correctly detected in the image or not
    """
        if detected_boxes.size > 0:
            if groundtruth_boxes.size > 0:
                max_score_id = np.argmax(detected_scores)
                mask_mode = False
                if detected_masks is not None and groundtruth_masks is not None:
                    mask_mode = True
                if mask_mode:
                    detected_boxlist = np_box_mask_list.BoxMaskList(
                        box_data=np.expand_dims(detected_boxes[max_score_id],
                                                axis=0),
                        mask_data=np.expand_dims(detected_masks[max_score_id],
                                                 axis=0))
                    gt_boxlist = np_box_mask_list.BoxMaskList(
                        box_data=groundtruth_boxes,
                        mask_data=groundtruth_masks)
                    iou = np_box_mask_list_ops.iou(detected_boxlist,
                                                   gt_boxlist)
                else:
                    detected_boxlist = np_box_list.BoxList(
                        np.expand_dims(detected_boxes[max_score_id, :],
                                       axis=0))
                    gt_boxlist = np_box_list.BoxList(groundtruth_boxes)
                    iou = np_box_list_ops.iou(detected_boxlist, gt_boxlist)
                if np.max(iou) >= self.matching_iou_threshold:
                    return 1
        return 0
Пример #2
0
def gather(boxlist, indices, fields=None):
    """Gather boxes from BoxList according to indices and return new BoxList.

  By default, gather returns boxes corresponding to the input index list, as
  well as all additional fields stored in the boxlist (indexing into the
  first dimension).  However one can optionally only gather from a
  subset of fields.

  Args:
    boxlist: BoxList holding N boxes
    indices: a 1-d numpy array of type int_
    fields: (optional) list of fields to also gather from.  If None (default),
        all fields are gathered from.  Pass an empty fields list to only gather
        the box coordinates.

  Returns:
    subboxlist: a BoxList corresponding to the subset of the input BoxList
        specified by indices

  Raises:
    ValueError: if specified field is not contained in boxlist or if the
        indices are not of type int_
  """
    if indices.size:
        if np.amax(indices) >= boxlist.num_boxes() or np.amin(indices) < 0:
            raise ValueError('indices are out of valid range.')
    subboxlist = np_box_list.BoxList(boxlist.get()[indices, :])
    if fields is None:
        fields = boxlist.get_extra_fields()
    for field in fields:
        extra_field_data = boxlist.get_field(field)
        subboxlist.add_field(field, extra_field_data[indices, ...])
    return subboxlist
Пример #3
0
def change_coordinate_frame(boxlist, window):
    """Change coordinate frame of the boxlist to be relative to window's frame.

  Given a window of the form [ymin, xmin, ymax, xmax],
  changes bounding box coordinates from boxlist to be relative to this window
  (e.g., the min corner maps to (0,0) and the max corner maps to (1,1)).

  An example use case is data augmentation: where we are given groundtruth
  boxes (boxlist) and would like to randomly crop the image to some
  window (window). In this case we need to change the coordinate frame of
  each groundtruth box to be relative to this new window.

  Args:
    boxlist: A BoxList object holding N boxes.
    window: a size 4 1-D numpy array.

  Returns:
    Returns a BoxList object with N boxes.
  """
    win_height = window[2] - window[0]
    win_width = window[3] - window[1]
    boxlist_new = scale(
        np_box_list.BoxList(boxlist.get() -
                            [window[0], window[1], window[0], window[1]]),
        1.0 / win_height, 1.0 / win_width)
    _copy_extra_fields(boxlist_new, boxlist)

    return boxlist_new
Пример #4
0
def clip_to_window(boxlist, window):
    """Clip bounding boxes to a window.

  This op clips input bounding boxes (represented by bounding box
  corners) to a window, optionally filtering out boxes that do not
  overlap at all with the window.

  Args:
    boxlist: BoxList holding M_in boxes
    window: a numpy array of shape [4] representing the
            [y_min, x_min, y_max, x_max] window to which the op
            should clip boxes.

  Returns:
    a BoxList holding M_out boxes where M_out <= M_in
  """
    y_min, x_min, y_max, x_max = np.array_split(boxlist.get(), 4, axis=1)
    win_y_min = window[0]
    win_x_min = window[1]
    win_y_max = window[2]
    win_x_max = window[3]
    y_min_clipped = np.fmax(np.fmin(y_min, win_y_max), win_y_min)
    y_max_clipped = np.fmax(np.fmin(y_max, win_y_max), win_y_min)
    x_min_clipped = np.fmax(np.fmin(x_min, win_x_max), win_x_min)
    x_max_clipped = np.fmax(np.fmin(x_max, win_x_max), win_x_min)
    clipped = np_box_list.BoxList(
        np.hstack([y_min_clipped, x_min_clipped, y_max_clipped,
                   x_max_clipped]))
    clipped = _copy_extra_fields(clipped, boxlist)
    areas = area(clipped)
    nonzero_area_indices = np.reshape(np.nonzero(np.greater(areas, 0.0)),
                                      [-1]).astype(np.int32)
    return gather(clipped, nonzero_area_indices)
Пример #5
0
def scale(boxlist, y_scale, x_scale):
    """Scale box coordinates in x and y dimensions.

  Args:
    boxlist: BoxList holding N boxes
    y_scale: float
    x_scale: float

  Returns:
    boxlist: BoxList holding N boxes
  """
    y_min, x_min, y_max, x_max = np.array_split(boxlist.get(), 4, axis=1)
    y_min = y_scale * y_min
    y_max = y_scale * y_max
    x_min = x_scale * x_min
    x_max = x_scale * x_max
    scaled_boxlist = np_box_list.BoxList(
        np.hstack([y_min, x_min, y_max, x_max]))

    fields = boxlist.get_extra_fields()
    for field in fields:
        extra_field_data = boxlist.get_field(field)
        scaled_boxlist.add_field(field, extra_field_data)

    return scaled_boxlist
Пример #6
0
    def _get_overlaps_and_scores_box_mode(self, detected_boxes,
                                          detected_scores, groundtruth_boxes,
                                          groundtruth_is_group_of_list):
        """Computes overlaps and scores between detected and groudntruth boxes.

    Args:
      detected_boxes: A numpy array of shape [N, 4] representing detected box
          coordinates
      detected_scores: A 1-d numpy array of length N representing classification
          score
      groundtruth_boxes: A numpy array of shape [M, 4] representing ground truth
          box coordinates
      groundtruth_is_group_of_list: A boolean numpy array of length M denoting
          whether a ground truth box has group-of tag. If a groundtruth box
          is group-of box, every detection matching this box is ignored.

    Returns:
      iou: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
          gt_non_group_of_boxlist.num_boxes() == 0 it will be None.
      ioa: A float numpy array of size [num_detected_boxes, num_gt_boxes]. If
          gt_group_of_boxlist.num_boxes() == 0 it will be None.
      scores: The score of the detected boxlist.
      num_boxes: Number of non-maximum suppressed detected boxes.
    """
        detected_boxlist = np_box_list.BoxList(detected_boxes)
        detected_boxlist.add_field('scores', detected_scores)
        detected_boxlist = np_box_list_ops.non_max_suppression(
            detected_boxlist, self.nms_max_output_boxes,
            self.nms_iou_threshold)
        gt_non_group_of_boxlist = np_box_list.BoxList(
            groundtruth_boxes[~groundtruth_is_group_of_list])
        gt_group_of_boxlist = np_box_list.BoxList(
            groundtruth_boxes[groundtruth_is_group_of_list])
        iou = np_box_list_ops.iou(detected_boxlist, gt_non_group_of_boxlist)
        ioa = np.transpose(
            np_box_list_ops.ioa(gt_group_of_boxlist, detected_boxlist))
        scores = detected_boxlist.get_field('scores')
        num_boxes = detected_boxlist.num_boxes()
        return iou, ioa, scores, num_boxes
Пример #7
0
def concatenate(boxlists, fields=None):
    """Concatenate list of BoxLists.

  This op concatenates a list of input BoxLists into a larger BoxList.  It also
  handles concatenation of BoxList fields as long as the field tensor shapes
  are equal except for the first dimension.

  Args:
    boxlists: list of BoxList objects
    fields: optional list of fields to also concatenate.  By default, all
      fields from the first BoxList in the list are included in the
      concatenation.

  Returns:
    a BoxList with number of boxes equal to
      sum([boxlist.num_boxes() for boxlist in BoxList])
  Raises:
    ValueError: if boxlists is invalid (i.e., is not a list, is empty, or
      contains non BoxList objects), or if requested fields are not contained in
      all boxlists
  """
    if not isinstance(boxlists, list):
        raise ValueError('boxlists should be a list')
    if not boxlists:
        raise ValueError('boxlists should have nonzero length')
    for boxlist in boxlists:
        if not isinstance(boxlist, np_box_list.BoxList):
            raise ValueError(
                'all elements of boxlists should be BoxList objects')
    concatenated = np_box_list.BoxList(
        np.vstack([boxlist.get() for boxlist in boxlists]))
    if fields is None:
        fields = boxlists[0].get_extra_fields()
    for field in fields:
        first_field_shape = boxlists[0].get_field(field).shape
        first_field_shape = first_field_shape[1:]
        for boxlist in boxlists:
            if not boxlist.has_field(field):
                raise ValueError('boxlist must contain all requested fields')
            field_shape = boxlist.get_field(field).shape
            field_shape = field_shape[1:]
            if field_shape != first_field_shape:
                raise ValueError(
                    'field %s must have same shape for all boxlists '
                    'except for the 0th dimension.' % field)
        concatenated_field = np.concatenate(
            [boxlist.get_field(field) for boxlist in boxlists], axis=0)
        concatenated.add_field(field, concatenated_field)
    return concatenated
Пример #8
0
def multi_class_non_max_suppression(boxlist, score_thresh, iou_thresh,
                                    max_output_size):
    """Multi-class version of non maximum suppression.

  This op greedily selects a subset of detection bounding boxes, pruning
  away boxes that have high IOU (intersection over union) overlap (> thresh)
  with already selected boxes.  It operates independently for each class for
  which scores are provided (via the scores field of the input box_list),
  pruning boxes with score less than a provided threshold prior to
  applying NMS.

  Args:
    boxlist: BoxList holding N boxes.  Must contain a 'scores' field
      representing detection scores.  This scores field is a tensor that can
      be 1 dimensional (in the case of a single class) or 2-dimensional, which
      which case we assume that it takes the shape [num_boxes, num_classes].
      We further assume that this rank is known statically and that
      scores.shape[1] is also known (i.e., the number of classes is fixed
      and known at graph construction time).
    score_thresh: scalar threshold for score (low scoring boxes are removed).
    iou_thresh: scalar threshold for IOU (boxes that that high IOU overlap
      with previously selected boxes are removed).
    max_output_size: maximum number of retained boxes per class.

  Returns:
    a BoxList holding M boxes with a rank-1 scores field representing
      corresponding scores for each box with scores sorted in decreasing order
      and a rank-1 classes field representing a class label for each box.
  Raises:
    ValueError: if iou_thresh is not in [0, 1] or if input boxlist does not have
      a valid scores field.
  """
    if not 0 <= iou_thresh <= 1.0:
        raise ValueError('thresh must be between 0 and 1')
    if not isinstance(boxlist, np_box_list.BoxList):
        raise ValueError('boxlist must be a BoxList')
    if not boxlist.has_field('scores'):
        raise ValueError('input boxlist must have \'scores\' field')
    scores = boxlist.get_field('scores')
    if len(scores.shape) == 1:
        scores = np.reshape(scores, [-1, 1])
    elif len(scores.shape) == 2:
        if scores.shape[1] is None:
            raise ValueError(
                'scores field must have statically defined second '
                'dimension')
    else:
        raise ValueError('scores field must be of rank 1 or 2')
    num_boxes = boxlist.num_boxes()
    num_scores = scores.shape[0]
    num_classes = scores.shape[1]

    if num_boxes != num_scores:
        raise ValueError('Incorrect scores field length: actual vs expected.')

    selected_boxes_list = []
    for class_idx in range(num_classes):
        boxlist_and_class_scores = np_box_list.BoxList(boxlist.get())
        class_scores = np.reshape(scores[0:num_scores, class_idx], [-1])
        boxlist_and_class_scores.add_field('scores', class_scores)
        boxlist_filt = filter_scores_greater_than(boxlist_and_class_scores,
                                                  score_thresh)
        nms_result = non_max_suppression(boxlist_filt,
                                         max_output_size=max_output_size,
                                         iou_threshold=iou_thresh,
                                         score_threshold=score_thresh)
        nms_result.add_field(
            'classes',
            np.zeros_like(nms_result.get_field('scores')) + class_idx)
        selected_boxes_list.append(nms_result)
    selected_boxes = concatenate(selected_boxes_list)
    sorted_boxes = sort_by_field(selected_boxes, 'scores')
    return sorted_boxes