vec = Vectoriser(docs, base=self.base_length)
        rl_agent = RLAgent(vec,
                           summaries,
                           strict_para=self.rl_strict,
                           train_round=self.train_episode)
        summary = rl_agent(rewards)
        return summary


if __name__ == '__main__':
    # read source documents
    reader = CorpusReader('data/topic_1')
    source_docs = reader()

    # generate summaries, with summary max length 100 tokens
    supert = Supert(source_docs)
    rl_summarizer = RLSummarizer(reward_func=supert)
    summary = rl_summarizer.summarize(source_docs, summ_max_len=100)
    print('\n=====Generated Summary=====')
    print(summary)

    # (Optional) Evaluate the quality of the summary using ROUGE metrics
    if os.path.isdir('./rouge/ROUGE-RELEASE-1.5.5'):
        refs = reader.readReferences(
        )  # make sure you have put the references in data/topic_1/references
        avg_rouge_score = {}
        for ref in refs:
            rouge_scores = evaluate_summary_rouge(summary, ref)
            add_result(avg_rouge_score, rouge_scores)
        print('\n=====ROUGE scores against {} references====='.format(
            len(refs)))