Пример #1
0
class TestObjective(object):
    def setup_method(self):
        # Choose the "true" parameters.

        # Reproducible results!
        np.random.seed(123)

        self.m_true = -0.9594
        self.b_true = 4.294
        self.f_true = 0.534
        self.m_ls = -1.1040757010910947
        self.b_ls = 5.4405552502319505

        # Generate some synthetic data from the model.
        N = 50
        x = np.sort(10 * np.random.rand(N))
        y_err = 0.1 + 0.5 * np.random.rand(N)
        y = self.m_true * x + self.b_true
        y += np.abs(self.f_true * y) * np.random.randn(N)
        y += y_err * np.random.randn(N)

        self.data = Data1D(data=(x, y, y_err))

        self.p = Parameter(self.b_ls, 'b') | Parameter(self.m_ls, 'm')
        self.model = Model(self.p, fitfunc=line)
        self.objective = Objective(self.model, self.data)

        # want b and m
        self.p[0].vary = True
        self.p[1].vary = True

        mod = np.array([
            4.78166609, 4.42364699, 4.16404064, 3.50343504, 3.4257084,
            2.93594347, 2.92035638, 2.67533842, 2.28136038, 2.19772983,
            1.99295496, 1.93748334, 1.87484436, 1.65161016, 1.44613461,
            1.11128101, 1.04584535, 0.86055984, 0.76913963, 0.73906649,
            0.73331407, 0.68350418, 0.65216599, 0.59838566, 0.13070299,
            0.10749131, -0.01010195, -0.10010155, -0.29495372, -0.42817431,
            -0.43122391, -0.64637715, -1.30560686, -1.32626428, -1.44835768,
            -1.52589881, -1.56371158, -2.12048349, -2.24899179, -2.50292682,
            -2.53576659, -2.55797996, -2.60870542, -2.7074727, -3.93781479,
            -4.12415366, -4.42313742, -4.98368609, -5.38782395, -5.44077086
        ])
        self.mod = mod

    def test_model(self):
        # test that the line data produced by our model is the same as the
        # test data
        assert_almost_equal(self.model(self.data.x), self.mod)

    def test_synthetic_data(self):
        # test that we create the correct synthetic data by performing a least
        # squares fit on it
        assert_(self.data.y_err is not None)

        x, y, y_err, _ = self.data.data
        A = np.vstack((np.ones_like(x), x)).T
        C = np.diag(y_err * y_err)
        cov = np.linalg.inv(np.dot(A.T, np.linalg.solve(C, A)))
        b_ls, m_ls = np.dot(cov, np.dot(A.T, np.linalg.solve(C, y)))

        assert_almost_equal(b_ls, self.b_ls)
        assert_almost_equal(m_ls, self.m_ls)

    def test_setp(self):
        # check that we can set parameters
        self.p[0].vary = False

        assert_(len(self.objective.varying_parameters()) == 1)
        self.objective.setp(np.array([1.23]))
        assert_equal(self.p[1].value, 1.23)
        self.objective.setp(np.array([1.234, 1.23]))
        assert_equal(np.array(self.p), [1.234, 1.23])

    def test_pvals(self):
        assert_equal(self.objective.parameters.pvals, [self.b_ls, self.m_ls])
        self.objective.parameters.pvals = [1, 2]
        assert_equal(self.objective.parameters.pvals, [1, 2.])

    def test_lnprior(self):
        self.p[0].range(0, 10)
        assert_almost_equal(self.objective.lnprior(), np.log(0.1))

        # lnprior should set parameters
        self.objective.lnprior([8, 2])
        assert_equal(np.array(self.objective.parameters), [8, 2])

        # if we supply a value outside the range it should return -inf
        assert_equal(self.objective.lnprior([-1, 2]), -np.inf)

    def test_lnprob(self):
        # http://dan.iel.fm/emcee/current/user/line/
        assert_almost_equal(self.objective.lnprior(), 0)
        # the uncertainties are underestimated in this example...
        assert_almost_equal(self.objective.lnlike(), -559.01078135444595)
        assert_almost_equal(self.objective.lnprob(), -559.01078135444595)

    def test_chisqr(self):
        assert_almost_equal(self.objective.chisqr(), 1231.1096772954229)

    def test_residuals(self):
        # weighted, with and without transform
        assert_almost_equal(self.objective.residuals(),
                            (self.data.y - self.mod) / self.data.y_err)

        objective = Objective(self.model,
                              self.data,
                              transform=Transform('lin'))
        assert_almost_equal(objective.residuals(),
                            (self.data.y - self.mod) / self.data.y_err)

        # unweighted, with and without transform
        objective = Objective(self.model, self.data, use_weights=False)
        assert_almost_equal(objective.residuals(), self.data.y - self.mod)

        objective = Objective(self.model,
                              self.data,
                              use_weights=False,
                              transform=Transform('lin'))
        assert_almost_equal(objective.residuals(), self.data.y - self.mod)

    def test_lnprob_extra(self):
        self.objective.lnprob_extra = lnprob_extra

        # repeat lnprior test
        self.p[0].range(0, 10)
        assert_almost_equal(self.objective.lnprior(), np.log(0.1) + 1)

    def test_objective_pickle(self):
        # can you pickle the objective function?
        pkl = pickle.dumps(self.objective)
        pickle.loads(pkl)

        # check the ForkingPickler as well.
        if hasattr(ForkingPickler, 'dumps'):
            pkl = ForkingPickler.dumps(self.objective)
            pickle.loads(pkl)

        # can you pickle with an extra function present?
        self.objective.lnprob_extra = lnprob_extra
        pkl = pickle.dumps(self.objective)
        pickle.loads(pkl)

        # check the ForkingPickler as well.
        if hasattr(ForkingPickler, 'dumps'):
            pkl = ForkingPickler.dumps(self.objective)
            pickle.loads(pkl)

    def test_transform_pickle(self):
        # can you pickle the Transform object?
        pkl = pickle.dumps(Transform('logY'))
        pickle.loads(pkl)

    def test_transform(self):
        pth = os.path.dirname(os.path.abspath(__file__))

        fname = os.path.join(pth, 'c_PLP0011859_q.txt')
        data = ReflectDataset(fname)
        t = Transform('logY')

        yt, et = t(data.x, data.y, y_err=data.y_err)
        assert_equal(yt, np.log10(data.y))

        yt, _ = t(data.x, data.y, y_err=None)
        assert_equal(yt, np.log10(data.y))

        EPy, EPe = EP.EPlog10(data.y, data.y_err)
        assert_equal(yt, EPy)
        assert_equal(et, EPe)

    def test_lnsigma(self):
        # check that lnsigma works correctly
        def lnprior(theta, x, y, yerr):
            m, b, lnf = theta
            if -5.0 < m < 0.5 and 0.0 < b < 10.0 and -10.0 < lnf < 1.0:
                return 0.0
            return -np.inf

        def lnlike(theta, x, y, yerr):
            m, b, lnf = theta
            model = m * x + b
            inv_sigma2 = 1.0 / (yerr**2 + model**2 * np.exp(2 * lnf))
            print(inv_sigma2)
            return -0.5 * (np.sum((y - model)**2 * inv_sigma2 -
                                  np.log(inv_sigma2)))

        x, y, yerr, _ = self.data.data

        theta = [self.m_true, self.b_true, np.log(self.f_true)]
        bo = BaseObjective(theta,
                           lnlike,
                           lnprior=lnprior,
                           fcn_args=(x, y, yerr))

        lnsigma = Parameter(np.log(self.f_true),
                            'lnsigma',
                            bounds=(-10, 1),
                            vary=True)
        self.objective.setp(np.array([self.b_true, self.m_true]))
        self.objective.lnsigma = lnsigma

        assert_allclose(self.objective.lnlike(), bo.lnlike())

    def test_base_emcee(self):
        # check that the base objective works against the emcee example.
        def lnprior(theta, x, y, yerr):
            m, b, lnf = theta
            if -5.0 < m < 0.5 and 0.0 < b < 10.0 and -10.0 < lnf < 1.0:
                return 0.0
            return -np.inf

        def lnlike(theta, x, y, yerr):
            m, b, lnf = theta
            model = m * x + b
            inv_sigma2 = 1.0 / (yerr**2 + model**2 * np.exp(2 * lnf))
            return -0.5 * (np.sum((y - model)**2 * inv_sigma2 -
                                  np.log(inv_sigma2)))

        x, y, yerr, _ = self.data.data

        theta = [self.m_true, self.b_true, np.log(self.f_true)]
        bo = BaseObjective(theta,
                           lnlike,
                           lnprior=lnprior,
                           fcn_args=(x, y, yerr))

        # test that the wrapper gives the same lnlike as the direct function
        assert_almost_equal(bo.lnlike(theta), lnlike(theta, x, y, yerr))
        assert_almost_equal(bo.lnlike(theta), -bo.nll(theta))
        assert_almost_equal(bo.nll(theta), 12.8885352412)

        # Find the maximum likelihood value.
        result = minimize(bo.nll, theta)

        # for repeatable sampling
        np.random.seed(1)

        ndim, nwalkers = 3, 100
        pos = [
            result["x"] + 1e-4 * np.random.randn(ndim) for i in range(nwalkers)
        ]

        sampler = emcee.EnsembleSampler(nwalkers, ndim, bo.lnprob)
        sampler.run_mcmc(pos, 800, rstate0=np.random.get_state())

        burnin = 200
        samples = sampler.chain[:, burnin:, :].reshape((-1, ndim))
        samples[:, 2] = np.exp(samples[:, 2])
        m_mc, b_mc, f_mc = map(
            lambda v: (v[1], v[2] - v[1], v[1] - v[0]),
            zip(*np.percentile(samples, [16, 50, 84], axis=0)))
        assert_allclose(m_mc, (-1.0071664, 0.0809444, 0.0784894), rtol=0.04)

        assert_allclose(b_mc, (4.5428107, 0.3549174, 0.3673304), rtol=0.04)

        assert_allclose(f_mc, (0.4610898, 0.0823304, 0.0640812), rtol=0.06)

        # # smoke test for covariance matrix
        bo.parameters = np.array(result['x'])
        covar1 = bo.covar()
        uncertainties = np.sqrt(np.diag(covar1))

        # covariance from objective._covar should be almost equal to
        # the covariance matrix from sampling
        covar2 = np.cov(samples.T)
        assert_almost_equal(np.sqrt(np.diag(covar2))[:2], uncertainties[:2], 2)

        # check covariance of self.objective
        # TODO
        var_arr = result['x'][:]
        var_arr[0], var_arr[1], var_arr[2] = var_arr[2], var_arr[1], var_arr[0]

        # assert_(self.objective.data.weighted)
        # self.objective.parameters.pvals = var_arr
        # covar3 = self.objective.covar()
        # uncertainties3 = np.sqrt(np.diag(covar3))
        # assert_almost_equal(uncertainties3, uncertainties)
        # assert(False)

    def test_covar(self):
        # checks objective.covar against optimize.least_squares covariance.
        path = os.path.dirname(os.path.abspath(__file__))

        theoretical = np.loadtxt(os.path.join(path, 'gauss_data.txt'))
        xvals, yvals, evals = np.hsplit(theoretical, 3)
        xvals = xvals.flatten()
        yvals = yvals.flatten()
        evals = evals.flatten()

        p0 = np.array([0.1, 20., 0.1, 0.1])
        names = ['bkg', 'A', 'x0', 'width']
        bounds = [(-1, 1), (0, 30), (-5., 5.), (0.001, 2)]

        params = Parameters(name="gauss_params")
        for p, name, bound in zip(p0, names, bounds):
            param = Parameter(p, name=name)
            param.range(*bound)
            param.vary = True
            params.append(param)

        model = Model(params, fitfunc=gauss)
        data = Data1D((xvals, yvals, evals))
        objective = Objective(model, data)

        # first calculate least_squares jac/hess/covariance matrices
        res = least_squares(objective.residuals,
                            np.array(params),
                            jac='3-point')

        hess_least_squares = np.matmul(res.jac.T, res.jac)
        covar_least_squares = np.linalg.inv(hess_least_squares)

        # now calculate corresponding matrices by hand, to see if the approach
        # concurs with least_squares
        objective.setp(res.x)
        _pvals = np.array(res.x)

        def residuals_scaler(vals):
            return np.squeeze(objective.residuals(_pvals * vals))

        jac = approx_derivative(residuals_scaler, np.ones_like(_pvals))
        hess = np.matmul(jac.T, jac)
        covar = np.linalg.inv(hess)

        covar = covar * np.atleast_2d(_pvals) * np.atleast_2d(_pvals).T

        assert_allclose(covar, covar_least_squares)

        # check that objective.covar corresponds to the least_squares
        # covariance matrix
        objective.setp(res.x)
        _pvals = np.array(res.x)
        covar_objective = objective.covar()
        assert_allclose(covar_objective, covar_least_squares)

        # now see what happens with a parameter that has no effect on residuals
        param = Parameter(1.234, name='dummy')
        param.vary = True
        params.append(param)

        from pytest import raises
        with raises(LinAlgError):
            objective.covar()
Пример #2
0
class Motofit(object):
    """
    An interactive slab modeller (Jupyter/ipywidgets based) for Neutron and
    X-ray reflectometry data.

    The interactive modeller is designed to be used in a Jupyter notebook.

    Usage
    -----

    >>> # specify that plots are in a separate graph window
    >>> %matplotlib qt

    >>> # alternately if you want the graph to be embedded in the notebook use
    >>> # %matplotlib notebook

    >>> from refnx.reflect import Motofit
    >>> # create an instance of the modeller
    >>> app = Motofit()
    >>> # display it in the notebook by calling the object with a datafile.
    >>> app('dataset1.txt')
    >>> # lets fit a different dataset
    >>> app2 = Motofit()
    >>> app2('dataset2.txt')

    The `Motofit` instance has several useful attributes that can be used in
    other cells. For example, one can access the `objective` and `curvefitter`
    attributes for more advanced fitting functionality than is available in the
    GUI. A `code` attribute can be used to retrieve a Python code fragment that
    can be used as a basis for developing more complicated models, such as
    interparameter constraints, global fitting, etc.

    Attributes
    ----------
    dataset: refnx.reflect.Data1D
        The dataset associated with the modeller
    model: refnx.reflect.ReflectModel
        Calculates a theoretical model, from an interfacial structure
        (`model.Structure`).
    objective: refnx.analysis.Objective
        The Objective that allows one to compare the model against the data.
    curvefitter: refnx.analysis.CurveFitter
        Object for fitting the data based on the objective.
    fig: matplotlib.Figure
        Graph displaying the data.
    code: str
        A Python code fragment capable of fitting the data.

    Methods
    -------
    __call__ - display the GUI in a Jupyter cell
    save_model - save the current model to a pickle file
    load_model - load a pickle file and set it as the current file
    set_model - use an existing `refnx.reflect.ReflectModel` to set the GUI
                model
    load_data - load a dataset
    do_fit - do a fit
    redraw - Update the notebook cell containing the GUI
    """
    def __init__(self):
        # attributes for the graph
        # for the graph
        self.qmin = 0.005
        self.qmax = 0.5
        self.qpnt = 1000
        self.fig = None

        self.ax_data = None
        self.ax_residual = None
        self.ax_sld = None
        # gridspecs specify how the plots are laid out. Gridspec1 is when the
        # residuals plot is displayed. Gridspec2 is when it's not visible
        self._gridspec1 = gridspec.GridSpec(2,
                                            2,
                                            height_ratios=[5, 1],
                                            width_ratios=[1, 1],
                                            hspace=0.01)
        self._gridspec2 = gridspec.GridSpec(1, 2)

        self.theoretical_plot = None
        self.theoretical_plot_sld = None

        # attributes for a user dataset
        self.dataset = None
        self.objective = None
        self._curvefitter = None
        self.data_plot = None
        self.residuals_plot = None
        self.data_plot_sld = None

        self.dataset_name = widgets.Text(description='dataset:')
        self.dataset_name.disabled = True
        self.chisqr = widgets.FloatText(description='chi-squared:')
        self.chisqr.disabled = True

        # fronting
        slab0 = Slab(0, 0, 0)
        slab1 = Slab(25, 3.47, 3)
        slab2 = Slab(0, 2.07, 3)

        structure = slab0 | slab1 | slab2
        rename_params(structure)
        self.model = ReflectModel(structure)
        structure = slab0 | slab1 | slab2
        self.model = ReflectModel(structure)

        # give some default parameter limits
        self.model.scale.bounds = (0.1, 2)
        self.model.bkg.bounds = (1e-8, 2e-5)
        self.model.dq.bounds = (0, 20)
        for slab in self.model.structure:
            slab.thick.bounds = (0, 2 * slab.thick.value)
            slab.sld.real.bounds = (0, 2 * slab.sld.real.value)
            slab.sld.imag.bounds = (0, 2 * slab.sld.imag.value)
            slab.rough.bounds = (0, 2 * slab.rough.value)

        # the main GUI widget
        self.display_box = widgets.VBox()

        self.tab = widgets.Tab()
        self.tab.set_title(0, 'Model')
        self.tab.set_title(1, 'Limits')
        self.tab.set_title(2, 'Options')
        self.tab.observe(self._on_tab_changed, names='selected_index')

        # an output area for messages.
        self.output = widgets.Output()

        # options tab
        self.plot_type = widgets.Dropdown(
            options=['lin', 'logY', 'YX4', 'YX2'],
            value='lin',
            description='Plot Type:',
            disabled=False)
        self.plot_type.observe(self._on_plot_type_changed, names='value')
        self.use_weights = widgets.RadioButtons(
            options=['Yes', 'No'],
            value='Yes',
            description='use dataset weights?',
            style={'description_width': 'initial'})
        self.use_weights.observe(self._on_use_weights_changed, names='value')
        self.transform = Transform('lin')
        self.display_residuals = widgets.Checkbox(
            value=False, description='Display residuals')
        self.display_residuals.observe(self._on_display_residuals_changed,
                                       names='value')

        self.model_view = None
        self.set_model(self.model)

    def save_model(self, f=None):
        """
        Serialise a model to a pickle file.

        Parameters
        ----------
        f: file like or str
            File to save model to.
        """
        if f is None:
            f = 'model_' + datetime.datetime.now().isoformat() + '.pkl'
            if self.dataset is not None:
                f = 'model_' + self.dataset.name + '.pkl'

        with possibly_open_file(f) as g:
            pickle.dump(self.model, g)

    def load_model(self, f):
        """
        Load a serialised model.

        Parameters
        ----------
        f: file like or str
            pickle file to load model from.
        """
        with possibly_open_file(f) as g:
            reflect_model = pickle.load(g)
            self.set_model(reflect_model)
        self._print(repr(self.objective))

    def set_model(self, model):
        """
        Change the `refnx.reflect.ReflectModel` associated with the `Motofit`
        instance.

        Parameters
        ----------
        model: refnx.reflect.ReflectModel

        """
        if self.model_view is not None:
            self.model_view.unobserve_all()

        # figure out if the reflect_model is a different instance. If it is
        # then the objective has to be updated.
        if model is not self.model:
            self.model = model
            self._update_analysis_objects()

        self.model = model

        self.model_view = ReflectModelView(self.model)
        self.model_view.observe(self.update_model, names=['view_changed'])
        self.model_view.observe(self.redraw, names=['view_redraw'])

        # observe when the number of varying parameters changed. This
        # invalidates a curvefitter, and a new one has to be produced.
        self.model_view.observe(self._on_num_varying_changed,
                                names=['num_varying'])

        self.model_view.do_fit_button.on_click(self.do_fit)
        self.model_view.to_code_button.on_click(self._to_code)

        self.redraw(None)

    def update_model(self, change):
        """
        Updates the plots when the parameters change

        Parameters
        ----------
        change

        """
        if not self.fig:
            return

        q = np.linspace(self.qmin, self.qmax, self.qpnt)
        theoretical = self.model.model(q)
        yt, _ = self.transform(q, theoretical)

        sld_profile = self.model.structure.sld_profile()
        z, sld = sld_profile
        if self.theoretical_plot is not None:
            self.theoretical_plot.set_xdata(q)
            self.theoretical_plot.set_ydata(yt)

            self.theoretical_plot_sld.set_xdata(z)
            self.theoretical_plot_sld.set_ydata(sld)
            self.ax_sld.relim()
            self.ax_sld.autoscale_view()

        if self.dataset is not None:
            # if there's a dataset loaded then residuals_plot
            # should exist
            residuals = self.objective.residuals()
            self.chisqr.value = np.sum(residuals**2)

            self.residuals_plot.set_xdata(self.dataset.x)
            self.residuals_plot.set_ydata(residuals)
            self.ax_residual.relim()
            self.ax_residual.autoscale_view()

        self.fig.canvas.draw()

    def _on_num_varying_changed(self, change):
        # observe when the number of varying parameters changed. This
        # invalidates a curvefitter, and a new one has to be produced.
        if change['new'] != change['old']:
            self._curvefitter = None

    def _update_analysis_objects(self):
        use_weights = self.use_weights.value == 'Yes'
        self.objective = Objective(self.model,
                                   self.dataset,
                                   transform=self.transform,
                                   use_weights=use_weights)
        self._curvefitter = None

    def __call__(self, data=None, model=None):
        """
        Display the `Motofit` GUI in a Jupyter notebook cell.

        Parameters
        ----------
        data: refnx.dataset.Data1D
            The dataset to associate with the `Motofit` instance.

        model: refnx.reflect.ReflectModel or str or file-like
            A model to associate with the data.
            If `model` is a `str` or `file`-like then the `load_model` method
            will be used to try and load the model from file. This assumes that
            the file is a pickle of a `ReflectModel`
        """
        # the theoretical model
        # display the main graph
        self.fig = plt.figure(figsize=(9, 4))

        # grid specs depending on whether the residuals are displayed
        if self.display_residuals.value:
            d_gs = self._gridspec1[0, 0]
            sld_gs = self._gridspec1[:, 1]
        else:
            d_gs = self._gridspec2[0, 0]
            sld_gs = self._gridspec2[0, 1]

        self.ax_data = self.fig.add_subplot(d_gs)
        self.ax_data.set_xlabel('$Q/\AA^{-1}$')
        self.ax_data.set_ylabel('Reflectivity')

        self.ax_data.grid(True, color='b', linestyle='--', linewidth=0.1)

        self.ax_sld = self.fig.add_subplot(sld_gs)
        self.ax_sld.set_ylabel('$\\rho/10^{-6}\AA^{-2}$')
        self.ax_sld.set_xlabel('$z/\AA$')

        self.ax_residual = self.fig.add_subplot(self._gridspec1[1, 0],
                                                sharex=self.ax_data)
        self.ax_residual.set_xlabel('$Q/\AA^{-1}$')
        self.ax_residual.grid(True, color='b', linestyle='--', linewidth=0.1)
        self.ax_residual.set_visible(self.display_residuals.value)

        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            self.fig.tight_layout()

        q = np.linspace(self.qmin, self.qmax, self.qpnt)
        theoretical = self.model.model(q)
        yt, _ = self.transform(q, theoretical)

        self.theoretical_plot = self.ax_data.plot(q, yt, zorder=2)[0]
        self.ax_data.set_yscale('log')

        z, sld = self.model.structure.sld_profile()
        self.theoretical_plot_sld = self.ax_sld.plot(z, sld)[0]

        # the figure has been reset, so remove ref to the data_plot,
        # residual_plot
        self.data_plot = None
        self.residuals_plot = None

        self.dataset = None
        if data is not None:
            self.load_data(data)

        if isinstance(model, ReflectModel):
            self.set_model(model)
            return self.display_box
        elif model is not None:
            self.load_model(model)
            return self.display_box

        self.redraw(None)
        return self.display_box

    def load_data(self, data):
        """
        Load a dataset into the `Motofit` instance.

        Parameters
        ----------
        data: refnx.dataset.Data1D, or str, or file-like
        """
        if isinstance(data, ReflectDataset):
            self.dataset = data
        else:
            self.dataset = ReflectDataset(data)

        self.dataset_name.value = self.dataset.name

        # loading a dataset changes the objective and curvefitter
        self._update_analysis_objects()

        self.qmin = np.min(self.dataset.x)
        self.qmax = np.max(self.dataset.x)
        if self.fig is not None:
            yt, et = self.transform(self.dataset.x, self.dataset.y)

            if self.data_plot is None:
                self.data_plot, = self.ax_data.plot(self.dataset.x,
                                                    yt,
                                                    label=self.dataset.name,
                                                    ms=2,
                                                    marker='o',
                                                    ls='',
                                                    zorder=1)
                self.data_plot.set_label(self.dataset.name)
                self.ax_data.legend()

                # no need to calculate residuals here, that'll be updated in
                # the redraw method
                self.residuals_plot, = self.ax_residual.plot(self.dataset.x)
            else:
                self.data_plot.set_xdata(self.dataset.x)
                self.data_plot.set_ydata(yt)

            # calculate theoretical model over same range as data
            # use redraw over update_model because it ensures chi2 widget gets
            # displayed
            self.redraw(None)
            self.ax_data.relim()
            self.ax_data.autoscale_view()
            self.ax_residual.relim()
            self.ax_residual.autoscale_view()
            self.fig.canvas.draw()

    def redraw(self, change):
        """
        Redraw the Jupyter GUI associated with the `Motofit` instance.
        """
        self._update_display_box(self.display_box)
        self.update_model(None)

    @property
    def curvefitter(self):
        if self.objective is not None and self._curvefitter is None:
            self._curvefitter = CurveFitter(self.objective)

        return self._curvefitter

    def _print(self, string):
        """
        Print to the output widget
        """
        with self.output:
            clear_output()
            print(string)

    def do_fit(self, change=None):
        """
        Ask the Motofit object to perform a fit (differential evolution).

        Parameters
        ----------
        change

        Notes
        -----
        After performing the fit the Jupyter display is updated.

        """
        if self.dataset is None:
            return

        if not self.model.parameters.varying_parameters():
            self._print("No parameters are being varied")
            return

        try:
            lnprior = self.objective.lnprior()
            if not np.isfinite(lnprior):
                self._print("One of your parameter values lies outside its"
                            " bounds. Please adjust the value, or the bounds.")
                return
        except ZeroDivisionError:
            self._print("One parameter has equal lower and upper bounds."
                        " Either alter the bounds, or don't let that"
                        " parameter vary.")
            return

        def callback(xk, convergence):
            self.chisqr.value = self.objective.chisqr(xk)

        self.curvefitter.fit('differential_evolution', callback=callback)

        # need to update the widgets as the model will be updated.
        # this also redraws GUI.
        # self.model_view.refresh()
        self.set_model(self.model)

        self._print(repr(self.objective))

    def _to_code(self, change=None):
        self._print(self.code)

    @property
    def code(self):
        """
        Executable Python code fragment for the GUI model.
        """
        if self.objective is None:
            self._update_analysis_objects()

        return to_code(self.objective)

    def _on_tab_changed(self, change):
        pass

    def _on_plot_type_changed(self, change):
        """
        User would like to plot and fit as logR/linR/RQ4/RQ2, etc
        """
        self.transform = Transform(change['new'])
        if self.objective is not None:
            self.objective.transform = self.transform

        if self.dataset is not None:
            yt, _ = self.transform(self.dataset.x, self.dataset.y)

            self.data_plot.set_xdata(self.dataset.x)
            self.data_plot.set_ydata(yt)

        self.update_model(None)

        # probably have to change LHS axis of the data plot when
        # going between different plot types.
        if change['new'] == 'logY':
            self.ax_data.set_yscale('linear')
        else:
            self.ax_data.set_yscale('log')

        self.ax_data.relim()
        self.ax_data.autoscale_view()
        self.fig.canvas.draw()

    def _on_use_weights_changed(self, change):
        self._update_analysis_objects()
        self.update_model(None)

    def _on_display_residuals_changed(self, change):
        if change['new']:
            self.ax_residual.set_visible(True)
            self.ax_data.set_position(self._gridspec1[0, 0].get_position(
                self.fig))
            self.ax_sld.set_position(self._gridspec1[:,
                                                     1].get_position(self.fig))
            plt.setp(self.ax_data.get_xticklabels(), visible=False)
        else:
            self.ax_residual.set_visible(False)
            self.ax_data.set_position(self._gridspec2[:, 0].get_position(
                self.fig))
            self.ax_sld.set_position(self._gridspec2[:,
                                                     1].get_position(self.fig))
            plt.setp(self.ax_data.get_xticklabels(), visible=True)

    @property
    def _options_box(self):
        return widgets.VBox(
            [self.plot_type, self.use_weights, self.display_residuals])

    def _update_display_box(self, box):
        """
        Redraw the Jupyter GUI associated with the `Motofit` instance
        """
        vbox_widgets = []

        if self.dataset is not None:
            vbox_widgets.append(widgets.HBox([self.dataset_name, self.chisqr]))

        self.tab.children = [
            self.model_view.model_box, self.model_view.limits_box,
            self._options_box
        ]

        vbox_widgets.append(self.tab)
        vbox_widgets.append(self.output)
        box.children = tuple(vbox_widgets)