def test_class(): """ runs several class methods on generic instance """ n, p = 100, 20 X = np.random.standard_normal((n, p)) Y = np.random.standard_normal(n) loss = rr.squared_error(X, Y) pen = rr.l1norm(p, lagrange=1.0) problem = rr.simple_problem(loss, pen) problem.latexify() for debug, coef_stop, max_its in product([True, False], [True, False], [5, 100]): rr.gengrad(problem, rr.power_L(X) ** 2, max_its=max_its, debug=debug, coef_stop=coef_stop)
def test_simple_problem_nonsmooth(self): tests = [] atom, q = self.atom, self.q loss = self.loss p2 = copy(atom) p2.quadratic = atom.quadratic + q problem = rr.simple_problem.nonsmooth(p2) solver = rr.FISTA(problem) solver.fit(tol=1.0e-14, FISTA=self.FISTA, coef_stop=self.coef_stop, min_its=100) gg = rr.gengrad( problem, 2.) # this lipschitz constant is based on knowing our loss... tests.append((atom.proximal(q), gg, 'solving prox with gengrad\n %s ' % str(self))) tests.append((atom.proximal(q), atom.solve(q), 'solving prox with solve method\n %s ' % str(self))) tests.append(( atom.proximal(q), solver.composite.coefs, 'solving prox with simple_problem.nonsmooth with monotonicity\n %s ' % str(self))) # use the solve method p3 = copy(atom) p3.quadratic = atom.quadratic + q soln = p3.solve(tol=1.e-14, min_its=10) tests.append((atom.proximal(q), soln, 'solving prox with solve method\n %s ' % str(self))) p4 = copy(atom) p4.quadratic = atom.quadratic + q problem = rr.simple_problem.nonsmooth(p4) solver = rr.FISTA(problem) solver.fit(tol=1.0e-14, monotonicity_restart=False, coef_stop=self.coef_stop, FISTA=self.FISTA, min_its=100) tests.append(( atom.proximal(q), solver.composite.coefs, 'solving prox with simple_problem.nonsmooth with no monotonocity\n %s ' % str(self))) if not self.interactive: for test in tests: yield (all_close, ) + test + (self, ) else: for test in tests: yield all_close(*((test + (self, ))))
def test_class(): ''' runs several class methods on generic instance ''' n, p = 100, 20 X = np.random.standard_normal((n, p)) Y = np.random.standard_normal(n) loss = rr.squared_error(X, Y) pen = rr.l1norm(p, lagrange=1.) problem = rr.simple_problem(loss, pen) problem.latexify() for debug, coef_stop, max_its in product([True, False], [True, False], [5, 100]): rr.gengrad(problem, rr.power_L(X)**2, max_its=max_its, debug=debug, coef_stop=coef_stop)
def test_gengrad(): Z = np.random.standard_normal(100) * 4 p = rr.l1norm(100, lagrange=0.13) L = 0.14 loss = rr.quadratic_loss.shift(Z, coef=L) problem = rr.simple_problem(loss, p) solver = rr.FISTA(problem) solver.fit(tol=1.0e-10, debug=True) simple_coef = solver.composite.coefs prox_coef = p.proximal(rr.identity_quadratic(L, Z, 0, 0)) p2 = rr.l1norm(100, lagrange=0.13) p2 = copy(p) p2.quadratic = rr.identity_quadratic(L, Z, 0, 0) problem = rr.simple_problem.nonsmooth(p2) solver = rr.FISTA(problem) solver.fit(tol=1.0e-14, debug=True) simple_nonsmooth_coef = solver.composite.coefs p = rr.l1norm(100, lagrange=0.13) p.quadratic = rr.identity_quadratic(L, Z, 0, 0) problem = rr.simple_problem.nonsmooth(p) simple_nonsmooth_gengrad = rr.gengrad(problem, L, tol=1.0e-10) p = rr.l1norm(100, lagrange=0.13) problem = rr.separable_problem.singleton(p, loss) solver = rr.FISTA(problem) solver.fit(tol=1.0e-10) separable_coef = solver.composite.coefs loss2 = rr.quadratic_loss.shift(Z, coef=0.6 * L) loss2.quadratic = rr.identity_quadratic(0.4 * L, Z, 0, 0) p.coefs *= 0 problem2 = rr.simple_problem(loss2, p) loss2_coefs = problem2.solve(coef_stop=True) solver2 = rr.FISTA(problem2) solver2.fit(tol=1.0e-10, debug=True, coef_stop=True) yield all_close, prox_coef, simple_nonsmooth_gengrad, 'prox to nonsmooth gengrad', None yield all_close, prox_coef, separable_coef, 'prox to separable', None yield all_close, prox_coef, simple_nonsmooth_coef, 'prox to simple_nonsmooth', None yield all_close, prox_coef, simple_coef, 'prox to simple', None yield all_close, prox_coef, loss2_coefs, 'simple where loss has quadratic 1', None yield all_close, prox_coef, solver2.composite.coefs, 'simple where loss has quadratic 2', None
def test_gengrad(): Z = np.random.standard_normal(100) * 4 p = rr.l1norm(100, lagrange=0.13) L = 0.14 loss = rr.quadratic_loss.shift(Z, coef=L) problem = rr.simple_problem(loss, p) solver = rr.FISTA(problem) solver.fit(tol=1.0e-10, debug=True) simple_coef = solver.composite.coefs prox_coef = p.proximal(rr.identity_quadratic(L, Z, 0, 0)) p2 = rr.l1norm(100, lagrange=0.13) p2 = copy(p) p2.quadratic = rr.identity_quadratic(L, Z, 0, 0) problem = rr.simple_problem.nonsmooth(p2) solver = rr.FISTA(problem) solver.fit(tol=1.0e-14, debug=True) simple_nonsmooth_coef = solver.composite.coefs p = rr.l1norm(100, lagrange=0.13) p.quadratic = rr.identity_quadratic(L, Z, 0, 0) problem = rr.simple_problem.nonsmooth(p) simple_nonsmooth_gengrad = rr.gengrad(problem, L, tol=1.0e-10) p = rr.l1norm(100, lagrange=0.13) problem = rr.separable_problem.singleton(p, loss) solver = rr.FISTA(problem) solver.fit(tol=1.0e-10) separable_coef = solver.composite.coefs loss2 = rr.quadratic_loss.shift(Z, coef=0.6 * L) loss2.quadratic = rr.identity_quadratic(0.4 * L, Z, 0, 0) p.coefs *= 0 problem2 = rr.simple_problem(loss2, p) loss2_coefs = problem2.solve(coef_stop=True) solver2 = rr.FISTA(problem2) solver2.fit(tol=1.0e-10, debug=True, coef_stop=True) yield all_close, prox_coef, simple_nonsmooth_gengrad, "prox to nonsmooth gengrad", None yield all_close, prox_coef, separable_coef, "prox to separable", None yield all_close, prox_coef, simple_nonsmooth_coef, "prox to simple_nonsmooth", None yield all_close, prox_coef, simple_coef, "prox to simple", None yield all_close, prox_coef, loss2_coefs, "simple where loss has quadratic 1", None yield all_close, prox_coef, solver2.composite.coefs, "simple where loss has quadratic 2", None
def test_simple_problem_nonsmooth(self): tests = [] atom, q = self.atom, self.q loss = self.loss p2 = copy(atom) p2.quadratic = atom.quadratic + q problem = rr.simple_problem.nonsmooth(p2) solver = rr.FISTA(problem) solver.fit(tol=1.0e-14, FISTA=self.FISTA, coef_stop=self.coef_stop, min_its=100) gg = rr.gengrad(problem, 2.) # this lipschitz constant is based on knowing our loss... tests.append((atom.proximal(q), gg, 'solving prox with gengrad\n %s ' % str(self))) tests.append((atom.proximal(q), atom.solve(q), 'solving prox with solve method\n %s ' % str(self))) tests.append((atom.proximal(q), solver.composite.coefs, 'solving prox with simple_problem.nonsmooth with monotonicity\n %s ' % str(self))) # use the solve method p3 = copy(atom) p3.quadratic = atom.quadratic + q soln = p3.solve(tol=1.e-14, min_its=10) tests.append((atom.proximal(q), soln, 'solving prox with solve method\n %s ' % str(self))) p4 = copy(atom) p4.quadratic = atom.quadratic + q problem = rr.simple_problem.nonsmooth(p4) solver = rr.FISTA(problem) solver.fit(tol=1.0e-14, monotonicity_restart=False, coef_stop=self.coef_stop, FISTA=self.FISTA, min_its=100) tests.append((atom.proximal(q), solver.composite.coefs, 'solving prox with simple_problem.nonsmooth with no monotonocity\n %s ' % str(self))) if not self.interactive: for test in tests: yield (all_close,) + test + (self,) else: for test in tests: yield all_close(*((test + (self,))))
def test_gengrad_blocknorms(): Z = np.random.standard_normal((10, 10)) * 4 p = rr.l1_l2((10, 10), lagrange=0.13) dual = p.conjugate L = 0.23 loss = rr.quadratic_loss.shift(Z, coef=L) problem = rr.simple_problem(loss, p) solver = rr.FISTA(problem) solver.fit(tol=1.0e-10, debug=True) simple_coef = solver.composite.coefs q = rr.identity_quadratic(L, Z, 0, 0) prox_coef = p.proximal(q) p2 = copy(p) p2.quadratic = rr.identity_quadratic(L, Z, 0, 0) problem = rr.simple_problem.nonsmooth(p2) solver = rr.FISTA(problem) solver.fit(tol=1.0e-14, debug=True) simple_nonsmooth_coef = solver.composite.coefs p = rr.l1_l2((10, 10), lagrange=0.13) p.quadratic = rr.identity_quadratic(L, Z, 0, 0) problem = rr.simple_problem.nonsmooth(p) simple_nonsmooth_gengrad = rr.gengrad(problem, L, tol=1.0e-10) p = rr.l1_l2((10, 10), lagrange=0.13) problem = rr.separable_problem.singleton(p, loss) solver = rr.FISTA(problem) solver.fit(tol=1.0e-10) separable_coef = solver.composite.coefs yield (all_close, prox_coef, simple_coef, 'prox to simple', None) yield (all_close, prox_coef, simple_nonsmooth_gengrad, 'prox to nonsmooth gengrad', None) yield (all_close, prox_coef, separable_coef, 'prox to separable', None) yield (all_close, prox_coef, simple_nonsmooth_coef, 'prox to simple_nonsmooth', None)
def test_gengrad_blocknorms(): Z = np.random.standard_normal((10, 10)) * 4 p = rr.l1_l2((10, 10), lagrange=0.13) dual = p.conjugate L = 0.23 loss = rr.quadratic_loss.shift(Z, coef=L) problem = rr.simple_problem(loss, p) solver = rr.FISTA(problem) solver.fit(tol=1.0e-10, debug=True) simple_coef = solver.composite.coefs q = rr.identity_quadratic(L, Z, 0, 0) prox_coef = p.proximal(q) p2 = copy(p) p2.quadratic = rr.identity_quadratic(L, Z, 0, 0) problem = rr.simple_problem.nonsmooth(p2) solver = rr.FISTA(problem) solver.fit(tol=1.0e-14, debug=True) simple_nonsmooth_coef = solver.composite.coefs p = rr.l1_l2((10, 10), lagrange=0.13) p.quadratic = rr.identity_quadratic(L, Z, 0, 0) problem = rr.simple_problem.nonsmooth(p) simple_nonsmooth_gengrad = rr.gengrad(problem, L, tol=1.0e-10) p = rr.l1_l2((10, 10), lagrange=0.13) problem = rr.separable_problem.singleton(p, loss) solver = rr.FISTA(problem) solver.fit(tol=1.0e-10) separable_coef = solver.composite.coefs yield (all_close, prox_coef, simple_coef, "prox to simple", None) yield (all_close, prox_coef, simple_nonsmooth_gengrad, "prox to nonsmooth gengrad", None) yield (all_close, prox_coef, separable_coef, "prox to separable", None) yield (all_close, prox_coef, simple_nonsmooth_coef, "prox to simple_nonsmooth", None)
def test_quadratic_for_smooth(): ''' this test is a check to ensure that the quadratic part of the smooth functions are being used in the proximal step ''' L = 0.45 W = np.random.standard_normal(40) Z = np.random.standard_normal(40) U = np.random.standard_normal(40) atomq = rr.identity_quadratic(0.4, U, W, 0) atom = rr.l1norm(40, quadratic=atomq, lagrange=0.12) # specifying in this way should be the same as if we put 0.5*L below loss = rr.quadratic.shift(Z, coef=0.6 * L) lq = rr.identity_quadratic(0.4 * L, Z, 0, 0) loss.quadratic = lq ww = np.random.standard_normal(40) # specifying in this way should be the same as if we put 0.5*L below loss2 = rr.quadratic.shift(Z, coef=L) yield all_close, loss2.objective(ww), loss.objective( ww), 'checking objective', None yield all_close, lq.objective(ww, 'func'), loss.nonsmooth_objective( ww), 'checking nonsmooth objective', None yield all_close, loss2.smooth_objective( ww, 'func'), 0.5 / 0.3 * loss.smooth_objective( ww, 'func'), 'checking smooth objective func', None yield all_close, loss2.smooth_objective( ww, 'grad'), 0.5 / 0.3 * loss.smooth_objective( ww, 'grad'), 'checking smooth objective grad', None problem = rr.container(loss, atom) solver = rr.FISTA(problem) solver.fit(tol=1.0e-12) problem3 = rr.simple_problem(loss, atom) solver3 = rr.FISTA(problem3) solver3.fit(tol=1.0e-12, coef_stop=True) loss4 = rr.quadratic.shift(Z, coef=0.6 * L) problem4 = rr.simple_problem(loss4, atom) problem4.quadratic = lq solver4 = rr.FISTA(problem4) solver4.fit(tol=1.0e-12) gg_soln = rr.gengrad(problem, L) loss6 = rr.quadratic.shift(Z, coef=0.6 * L) loss6.quadratic = lq + atom.quadratic atomcp = copy(atom) atomcp.quadratic = rr.identity_quadratic(0, 0, 0, 0) problem6 = rr.dual_problem(loss6.conjugate, rr.identity(loss6.shape), atomcp.conjugate) problem6.lipschitz = L + atom.quadratic.coef dsoln2 = problem6.solve(coef_stop=True, tol=1.e-10, max_its=100) problem2 = rr.container(loss2, atom) solver2 = rr.FISTA(problem2) solver2.fit(tol=1.0e-12, coef_stop=True) q = rr.identity_quadratic(L, Z, 0, 0) yield all_close, problem.objective( ww), atom.nonsmooth_objective(ww) + q.objective(ww, 'func'), '', None atom = rr.l1norm(40, quadratic=atomq, lagrange=0.12) aq = atom.solve(q) for p, msg in zip([ solver3.composite.coefs, gg_soln, solver2.composite.coefs, dsoln2, solver.composite.coefs, solver4.composite.coefs ], [ 'simple_problem with loss having no quadratic', 'gen grad', 'container with loss having no quadratic', 'dual problem with loss having a quadratic', 'container with loss having a quadratic', 'simple_problem having a quadratic' ]): yield all_close, aq, p, msg, None
def test_quadratic_for_smooth(): ''' this test is a check to ensure that the quadratic part of the smooth functions are being used in the proximal step ''' L = 0.45 W = np.random.standard_normal(40) Z = np.random.standard_normal(40) U = np.random.standard_normal(40) atomq = rr.identity_quadratic(0.4, U, W, 0) atom = rr.l1norm(40, quadratic=atomq, lagrange=0.12) # specifying in this way should be the same as if we put 0.5*L below loss = rr.quadratic_loss.shift(Z, coef=0.6*L) lq = rr.identity_quadratic(0.4*L, Z, 0, 0) loss.quadratic = lq ww = np.random.standard_normal(40) # specifying in this way should be the same as if we put 0.5*L below loss2 = rr.quadratic_loss.shift(Z, coef=L) yield all_close, loss2.objective(ww), loss.objective(ww), 'checking objective', None yield all_close, lq.objective(ww, 'func'), loss.nonsmooth_objective(ww), 'checking nonsmooth objective', None yield all_close, loss2.smooth_objective(ww, 'func'), 0.5 / 0.3 * loss.smooth_objective(ww, 'func'), 'checking smooth objective func', None yield all_close, loss2.smooth_objective(ww, 'grad'), 0.5 / 0.3 * loss.smooth_objective(ww, 'grad'), 'checking smooth objective grad', None problem = rr.container(loss, atom) solver = rr.FISTA(problem) solver.fit(tol=1.0e-12) problem3 = rr.simple_problem(loss, atom) solver3 = rr.FISTA(problem3) solver3.fit(tol=1.0e-12, coef_stop=True) loss4 = rr.quadratic_loss.shift(Z, coef=0.6*L) problem4 = rr.simple_problem(loss4, atom) problem4.quadratic = lq solver4 = rr.FISTA(problem4) solver4.fit(tol=1.0e-12) gg_soln = rr.gengrad(problem, L) loss6 = rr.quadratic_loss.shift(Z, coef=0.6*L) loss6.quadratic = lq + atom.quadratic atomcp = copy(atom) atomcp.quadratic = rr.identity_quadratic(0,0,0,0) problem6 = rr.dual_problem(loss6.conjugate, rr.identity(loss6.shape), atomcp.conjugate) problem6.lipschitz = L + atom.quadratic.coef dsoln2 = problem6.solve(coef_stop=True, tol=1.e-10, max_its=100) problem2 = rr.container(loss2, atom) solver2 = rr.FISTA(problem2) solver2.fit(tol=1.0e-12, coef_stop=True) q = rr.identity_quadratic(L, Z, 0, 0) yield all_close, problem.objective(ww), atom.nonsmooth_objective(ww) + q.objective(ww,'func'), '', None atom = rr.l1norm(40, quadratic=atomq, lagrange=0.12) aq = atom.solve(q) for p, msg in zip([solver3.composite.coefs, gg_soln, solver2.composite.coefs, dsoln2, solver.composite.coefs, solver4.composite.coefs], ['simple_problem with loss having no quadratic', 'gen grad', 'container with loss having no quadratic', 'dual problem with loss having a quadratic', 'container with loss having a quadratic', 'simple_problem having a quadratic']): yield all_close, aq, p, msg, None
def test_quadratic_for_smooth2(): """ this test is a check to ensure that the quadratic part of the smooth functions are being used in the proximal step """ L = 2 W = np.arange(5) Z = 0.5 * np.arange(5)[::-1] U = 1.5 * np.arange(5) atomq = rr.identity_quadratic(0.4, U, W, 0) atom = rr.l1norm(5, quadratic=atomq, lagrange=0.1) # specifying in this way should be the same as if we put 0.5*L below loss = rr.quadratic.shift(-Z, coef=0.6 * L) lq = rr.identity_quadratic(0.4 * L, Z, 0, 0) loss.quadratic = lq ww = np.ones(5) # specifying in this way should be the same as if we put 0.5*L below loss2 = rr.quadratic.shift(-Z, coef=L) np.testing.assert_allclose(loss2.objective(ww), loss.objective(ww)) np.testing.assert_allclose(lq.objective(ww, "func"), loss.nonsmooth_objective(ww)) np.testing.assert_allclose(loss2.smooth_objective(ww, "func"), 0.5 / 0.3 * loss.smooth_objective(ww, "func")) np.testing.assert_allclose(loss2.smooth_objective(ww, "grad"), 0.5 / 0.3 * loss.smooth_objective(ww, "grad")) problem = rr.container(loss, atom) solver = rr.FISTA(problem) solver.fit(tol=1.0e-12) problem3 = rr.simple_problem(loss, atom) solver3 = rr.FISTA(problem3) solver3.fit(tol=1.0e-12, coef_stop=True) loss4 = rr.quadratic.shift(-Z, coef=0.6 * L) problem4 = rr.simple_problem(loss4, atom) problem4.quadratic = lq solver4 = rr.FISTA(problem4) solver4.fit(tol=1.0e-12) gg_soln = rr.gengrad(problem4, L) loss6 = rr.quadratic.shift(-Z, coef=0.6 * L) loss6.quadratic = lq + atom.quadratic atomcp = copy(atom) atomcp.quadratic = rr.identity_quadratic(0, 0, 0, 0) problem6 = rr.dual_problem(loss6.conjugate, rr.identity(loss6.primal_shape), atomcp.conjugate) problem6.lipschitz = L + atom.quadratic.coef dsoln2 = problem6.solve(coef_stop=True, tol=1.0e-10, max_its=100) problem2 = rr.container(loss2, atom) solver2 = rr.FISTA(problem2) solver2.fit(tol=1.0e-12, coef_stop=True) q = rr.identity_quadratic(L, Z, 0, 0) ac(problem.objective(ww), atom.nonsmooth_objective(ww) + q.objective(ww, "func")) aq = atom.solve(q) for p, msg in zip( [ solver3.composite.coefs, gg_soln, solver2.composite.coefs, solver4.composite.coefs, dsoln2, solver.composite.coefs, ], [ "simple_problem with loss having no quadratic", "gen grad", "container with loss having no quadratic", "simple_problem container with quadratic", "dual problem with loss having a quadratic", "container with loss having a quadratic", ], ): yield ac, aq, p, msg