Пример #1
0
def test_class():
    """
    runs several class methods on generic instance
    """

    n, p = 100, 20
    X = np.random.standard_normal((n, p))
    Y = np.random.standard_normal(n)
    loss = rr.squared_error(X, Y)
    pen = rr.l1norm(p, lagrange=1.0)
    problem = rr.simple_problem(loss, pen)

    problem.latexify()

    for debug, coef_stop, max_its in product([True, False], [True, False], [5, 100]):
        rr.gengrad(problem, rr.power_L(X) ** 2, max_its=max_its, debug=debug, coef_stop=coef_stop)
Пример #2
0
    def test_simple_problem_nonsmooth(self):
        tests = []
        atom, q = self.atom, self.q
        loss = self.loss

        p2 = copy(atom)
        p2.quadratic = atom.quadratic + q
        problem = rr.simple_problem.nonsmooth(p2)
        solver = rr.FISTA(problem)
        solver.fit(tol=1.0e-14,
                   FISTA=self.FISTA,
                   coef_stop=self.coef_stop,
                   min_its=100)

        gg = rr.gengrad(
            problem,
            2.)  # this lipschitz constant is based on knowing our loss...
        tests.append((atom.proximal(q), gg,
                      'solving prox with gengrad\n %s ' % str(self)))

        tests.append((atom.proximal(q), atom.solve(q),
                      'solving prox with solve method\n %s ' % str(self)))

        tests.append((
            atom.proximal(q), solver.composite.coefs,
            'solving prox with simple_problem.nonsmooth with monotonicity\n %s '
            % str(self)))

        # use the solve method

        p3 = copy(atom)
        p3.quadratic = atom.quadratic + q
        soln = p3.solve(tol=1.e-14, min_its=10)
        tests.append((atom.proximal(q), soln,
                      'solving prox with solve method\n %s ' % str(self)))

        p4 = copy(atom)
        p4.quadratic = atom.quadratic + q
        problem = rr.simple_problem.nonsmooth(p4)
        solver = rr.FISTA(problem)
        solver.fit(tol=1.0e-14,
                   monotonicity_restart=False,
                   coef_stop=self.coef_stop,
                   FISTA=self.FISTA,
                   min_its=100)

        tests.append((
            atom.proximal(q), solver.composite.coefs,
            'solving prox with simple_problem.nonsmooth with no monotonocity\n %s '
            % str(self)))

        if not self.interactive:
            for test in tests:
                yield (all_close, ) + test + (self, )
        else:
            for test in tests:
                yield all_close(*((test + (self, ))))
Пример #3
0
def test_class():
    '''
    runs several class methods on generic instance
    '''

    n, p = 100, 20
    X = np.random.standard_normal((n, p))
    Y = np.random.standard_normal(n)
    loss = rr.squared_error(X, Y)
    pen = rr.l1norm(p, lagrange=1.)
    problem = rr.simple_problem(loss, pen)

    problem.latexify()

    for debug, coef_stop, max_its in product([True, False], [True, False],
                                             [5, 100]):
        rr.gengrad(problem,
                   rr.power_L(X)**2,
                   max_its=max_its,
                   debug=debug,
                   coef_stop=coef_stop)
Пример #4
0
def test_gengrad():
    Z = np.random.standard_normal(100) * 4
    p = rr.l1norm(100, lagrange=0.13)
    L = 0.14

    loss = rr.quadratic_loss.shift(Z, coef=L)
    problem = rr.simple_problem(loss, p)
    solver = rr.FISTA(problem)
    solver.fit(tol=1.0e-10, debug=True)

    simple_coef = solver.composite.coefs
    prox_coef = p.proximal(rr.identity_quadratic(L, Z, 0, 0))

    p2 = rr.l1norm(100, lagrange=0.13)
    p2 = copy(p)
    p2.quadratic = rr.identity_quadratic(L, Z, 0, 0)
    problem = rr.simple_problem.nonsmooth(p2)
    solver = rr.FISTA(problem)
    solver.fit(tol=1.0e-14, debug=True)
    simple_nonsmooth_coef = solver.composite.coefs

    p = rr.l1norm(100, lagrange=0.13)
    p.quadratic = rr.identity_quadratic(L, Z, 0, 0)
    problem = rr.simple_problem.nonsmooth(p)
    simple_nonsmooth_gengrad = rr.gengrad(problem, L, tol=1.0e-10)

    p = rr.l1norm(100, lagrange=0.13)
    problem = rr.separable_problem.singleton(p, loss)
    solver = rr.FISTA(problem)
    solver.fit(tol=1.0e-10)
    separable_coef = solver.composite.coefs

    loss2 = rr.quadratic_loss.shift(Z, coef=0.6 * L)
    loss2.quadratic = rr.identity_quadratic(0.4 * L, Z, 0, 0)
    p.coefs *= 0
    problem2 = rr.simple_problem(loss2, p)
    loss2_coefs = problem2.solve(coef_stop=True)
    solver2 = rr.FISTA(problem2)
    solver2.fit(tol=1.0e-10, debug=True, coef_stop=True)

    yield all_close, prox_coef, simple_nonsmooth_gengrad, 'prox to nonsmooth gengrad', None
    yield all_close, prox_coef, separable_coef, 'prox to separable', None
    yield all_close, prox_coef, simple_nonsmooth_coef, 'prox to simple_nonsmooth', None
    yield all_close, prox_coef, simple_coef, 'prox to simple', None
    yield all_close, prox_coef, loss2_coefs, 'simple where loss has quadratic 1', None
    yield all_close, prox_coef, solver2.composite.coefs, 'simple where loss has quadratic 2', None
Пример #5
0
def test_gengrad():
    Z = np.random.standard_normal(100) * 4
    p = rr.l1norm(100, lagrange=0.13)
    L = 0.14

    loss = rr.quadratic_loss.shift(Z, coef=L)
    problem = rr.simple_problem(loss, p)
    solver = rr.FISTA(problem)
    solver.fit(tol=1.0e-10, debug=True)

    simple_coef = solver.composite.coefs
    prox_coef = p.proximal(rr.identity_quadratic(L, Z, 0, 0))

    p2 = rr.l1norm(100, lagrange=0.13)
    p2 = copy(p)
    p2.quadratic = rr.identity_quadratic(L, Z, 0, 0)
    problem = rr.simple_problem.nonsmooth(p2)
    solver = rr.FISTA(problem)
    solver.fit(tol=1.0e-14, debug=True)
    simple_nonsmooth_coef = solver.composite.coefs

    p = rr.l1norm(100, lagrange=0.13)
    p.quadratic = rr.identity_quadratic(L, Z, 0, 0)
    problem = rr.simple_problem.nonsmooth(p)
    simple_nonsmooth_gengrad = rr.gengrad(problem, L, tol=1.0e-10)

    p = rr.l1norm(100, lagrange=0.13)
    problem = rr.separable_problem.singleton(p, loss)
    solver = rr.FISTA(problem)
    solver.fit(tol=1.0e-10)
    separable_coef = solver.composite.coefs

    loss2 = rr.quadratic_loss.shift(Z, coef=0.6 * L)
    loss2.quadratic = rr.identity_quadratic(0.4 * L, Z, 0, 0)
    p.coefs *= 0
    problem2 = rr.simple_problem(loss2, p)
    loss2_coefs = problem2.solve(coef_stop=True)
    solver2 = rr.FISTA(problem2)
    solver2.fit(tol=1.0e-10, debug=True, coef_stop=True)

    yield all_close, prox_coef, simple_nonsmooth_gengrad, "prox to nonsmooth gengrad", None
    yield all_close, prox_coef, separable_coef, "prox to separable", None
    yield all_close, prox_coef, simple_nonsmooth_coef, "prox to simple_nonsmooth", None
    yield all_close, prox_coef, simple_coef, "prox to simple", None
    yield all_close, prox_coef, loss2_coefs, "simple where loss has quadratic 1", None
    yield all_close, prox_coef, solver2.composite.coefs, "simple where loss has quadratic 2", None
Пример #6
0
    def test_simple_problem_nonsmooth(self):
        tests = []
        atom, q = self.atom, self.q
        loss = self.loss

        p2 = copy(atom)
        p2.quadratic = atom.quadratic + q
        problem = rr.simple_problem.nonsmooth(p2)
        solver = rr.FISTA(problem)
        solver.fit(tol=1.0e-14, FISTA=self.FISTA, coef_stop=self.coef_stop, min_its=100)

        gg = rr.gengrad(problem, 2.) # this lipschitz constant is based on knowing our loss...
        tests.append((atom.proximal(q), gg, 'solving prox with gengrad\n %s ' % str(self)))

        tests.append((atom.proximal(q), atom.solve(q), 'solving prox with solve method\n %s ' % str(self)))

        tests.append((atom.proximal(q), solver.composite.coefs, 'solving prox with simple_problem.nonsmooth with monotonicity\n %s ' % str(self)))

        # use the solve method

        p3 = copy(atom)
        p3.quadratic = atom.quadratic + q
        soln = p3.solve(tol=1.e-14, min_its=10)
        tests.append((atom.proximal(q), soln, 'solving prox with solve method\n %s ' % str(self)))

        p4 = copy(atom)
        p4.quadratic = atom.quadratic + q
        problem = rr.simple_problem.nonsmooth(p4)
        solver = rr.FISTA(problem)
        solver.fit(tol=1.0e-14, monotonicity_restart=False, coef_stop=self.coef_stop,
                   FISTA=self.FISTA,
                   min_its=100)

        tests.append((atom.proximal(q), solver.composite.coefs, 'solving prox with simple_problem.nonsmooth with no monotonocity\n %s ' % str(self)))

        if not self.interactive:
            for test in tests:
                yield (all_close,) + test + (self,)
        else:
            for test in tests:
                yield all_close(*((test + (self,))))
Пример #7
0
def test_gengrad_blocknorms():
    Z = np.random.standard_normal((10, 10)) * 4
    p = rr.l1_l2((10, 10), lagrange=0.13)
    dual = p.conjugate
    L = 0.23

    loss = rr.quadratic_loss.shift(Z, coef=L)
    problem = rr.simple_problem(loss, p)
    solver = rr.FISTA(problem)
    solver.fit(tol=1.0e-10, debug=True)
    simple_coef = solver.composite.coefs

    q = rr.identity_quadratic(L, Z, 0, 0)
    prox_coef = p.proximal(q)

    p2 = copy(p)
    p2.quadratic = rr.identity_quadratic(L, Z, 0, 0)
    problem = rr.simple_problem.nonsmooth(p2)
    solver = rr.FISTA(problem)
    solver.fit(tol=1.0e-14, debug=True)
    simple_nonsmooth_coef = solver.composite.coefs

    p = rr.l1_l2((10, 10), lagrange=0.13)
    p.quadratic = rr.identity_quadratic(L, Z, 0, 0)
    problem = rr.simple_problem.nonsmooth(p)
    simple_nonsmooth_gengrad = rr.gengrad(problem, L, tol=1.0e-10)

    p = rr.l1_l2((10, 10), lagrange=0.13)
    problem = rr.separable_problem.singleton(p, loss)
    solver = rr.FISTA(problem)
    solver.fit(tol=1.0e-10)
    separable_coef = solver.composite.coefs

    yield (all_close, prox_coef, simple_coef, 'prox to simple', None)
    yield (all_close, prox_coef, simple_nonsmooth_gengrad,
           'prox to nonsmooth gengrad', None)
    yield (all_close, prox_coef, separable_coef, 'prox to separable', None)
    yield (all_close, prox_coef, simple_nonsmooth_coef,
           'prox to simple_nonsmooth', None)
Пример #8
0
def test_gengrad_blocknorms():
    Z = np.random.standard_normal((10, 10)) * 4
    p = rr.l1_l2((10, 10), lagrange=0.13)
    dual = p.conjugate
    L = 0.23

    loss = rr.quadratic_loss.shift(Z, coef=L)
    problem = rr.simple_problem(loss, p)
    solver = rr.FISTA(problem)
    solver.fit(tol=1.0e-10, debug=True)
    simple_coef = solver.composite.coefs

    q = rr.identity_quadratic(L, Z, 0, 0)
    prox_coef = p.proximal(q)

    p2 = copy(p)
    p2.quadratic = rr.identity_quadratic(L, Z, 0, 0)
    problem = rr.simple_problem.nonsmooth(p2)
    solver = rr.FISTA(problem)
    solver.fit(tol=1.0e-14, debug=True)
    simple_nonsmooth_coef = solver.composite.coefs

    p = rr.l1_l2((10, 10), lagrange=0.13)
    p.quadratic = rr.identity_quadratic(L, Z, 0, 0)
    problem = rr.simple_problem.nonsmooth(p)
    simple_nonsmooth_gengrad = rr.gengrad(problem, L, tol=1.0e-10)

    p = rr.l1_l2((10, 10), lagrange=0.13)
    problem = rr.separable_problem.singleton(p, loss)
    solver = rr.FISTA(problem)
    solver.fit(tol=1.0e-10)
    separable_coef = solver.composite.coefs

    yield (all_close, prox_coef, simple_coef, "prox to simple", None)
    yield (all_close, prox_coef, simple_nonsmooth_gengrad, "prox to nonsmooth gengrad", None)
    yield (all_close, prox_coef, separable_coef, "prox to separable", None)
    yield (all_close, prox_coef, simple_nonsmooth_coef, "prox to simple_nonsmooth", None)
Пример #9
0
def test_quadratic_for_smooth():
    '''
    this test is a check to ensure that the quadratic part 
    of the smooth functions are being used in the proximal step
    '''

    L = 0.45

    W = np.random.standard_normal(40)
    Z = np.random.standard_normal(40)
    U = np.random.standard_normal(40)

    atomq = rr.identity_quadratic(0.4, U, W, 0)
    atom = rr.l1norm(40, quadratic=atomq, lagrange=0.12)

    # specifying in this way should be the same as if we put 0.5*L below
    loss = rr.quadratic.shift(Z, coef=0.6 * L)
    lq = rr.identity_quadratic(0.4 * L, Z, 0, 0)
    loss.quadratic = lq

    ww = np.random.standard_normal(40)

    # specifying in this way should be the same as if we put 0.5*L below
    loss2 = rr.quadratic.shift(Z, coef=L)
    yield all_close, loss2.objective(ww), loss.objective(
        ww), 'checking objective', None

    yield all_close, lq.objective(ww, 'func'), loss.nonsmooth_objective(
        ww), 'checking nonsmooth objective', None
    yield all_close, loss2.smooth_objective(
        ww, 'func'), 0.5 / 0.3 * loss.smooth_objective(
            ww, 'func'), 'checking smooth objective func', None
    yield all_close, loss2.smooth_objective(
        ww, 'grad'), 0.5 / 0.3 * loss.smooth_objective(
            ww, 'grad'), 'checking smooth objective grad', None

    problem = rr.container(loss, atom)
    solver = rr.FISTA(problem)
    solver.fit(tol=1.0e-12)

    problem3 = rr.simple_problem(loss, atom)
    solver3 = rr.FISTA(problem3)
    solver3.fit(tol=1.0e-12, coef_stop=True)

    loss4 = rr.quadratic.shift(Z, coef=0.6 * L)
    problem4 = rr.simple_problem(loss4, atom)
    problem4.quadratic = lq
    solver4 = rr.FISTA(problem4)
    solver4.fit(tol=1.0e-12)

    gg_soln = rr.gengrad(problem, L)

    loss6 = rr.quadratic.shift(Z, coef=0.6 * L)
    loss6.quadratic = lq + atom.quadratic
    atomcp = copy(atom)
    atomcp.quadratic = rr.identity_quadratic(0, 0, 0, 0)
    problem6 = rr.dual_problem(loss6.conjugate, rr.identity(loss6.shape),
                               atomcp.conjugate)
    problem6.lipschitz = L + atom.quadratic.coef
    dsoln2 = problem6.solve(coef_stop=True, tol=1.e-10, max_its=100)

    problem2 = rr.container(loss2, atom)
    solver2 = rr.FISTA(problem2)
    solver2.fit(tol=1.0e-12, coef_stop=True)

    q = rr.identity_quadratic(L, Z, 0, 0)

    yield all_close, problem.objective(
        ww), atom.nonsmooth_objective(ww) + q.objective(ww, 'func'), '', None

    atom = rr.l1norm(40, quadratic=atomq, lagrange=0.12)
    aq = atom.solve(q)
    for p, msg in zip([
            solver3.composite.coefs, gg_soln, solver2.composite.coefs, dsoln2,
            solver.composite.coefs, solver4.composite.coefs
    ], [
            'simple_problem with loss having no quadratic', 'gen grad',
            'container with loss having no quadratic',
            'dual problem with loss having a quadratic',
            'container with loss having a quadratic',
            'simple_problem having a quadratic'
    ]):
        yield all_close, aq, p, msg, None
Пример #10
0
def test_quadratic_for_smooth():
    '''
    this test is a check to ensure that the quadratic part 
    of the smooth functions are being used in the proximal step
    '''

    L = 0.45

    W = np.random.standard_normal(40)
    Z = np.random.standard_normal(40)
    U = np.random.standard_normal(40)

    atomq = rr.identity_quadratic(0.4, U, W, 0)
    atom = rr.l1norm(40, quadratic=atomq, lagrange=0.12)

    # specifying in this way should be the same as if we put 0.5*L below
    loss = rr.quadratic_loss.shift(Z, coef=0.6*L)
    lq = rr.identity_quadratic(0.4*L, Z, 0, 0)
    loss.quadratic = lq 

    ww = np.random.standard_normal(40)

    # specifying in this way should be the same as if we put 0.5*L below
    loss2 = rr.quadratic_loss.shift(Z, coef=L)
    yield all_close, loss2.objective(ww), loss.objective(ww), 'checking objective', None

    yield all_close, lq.objective(ww, 'func'), loss.nonsmooth_objective(ww), 'checking nonsmooth objective', None
    yield all_close, loss2.smooth_objective(ww, 'func'), 0.5 / 0.3 * loss.smooth_objective(ww, 'func'), 'checking smooth objective func', None
    yield all_close, loss2.smooth_objective(ww, 'grad'), 0.5 / 0.3 * loss.smooth_objective(ww, 'grad'), 'checking smooth objective grad', None

    problem = rr.container(loss, atom)
    solver = rr.FISTA(problem)
    solver.fit(tol=1.0e-12)

    problem3 = rr.simple_problem(loss, atom)
    solver3 = rr.FISTA(problem3)
    solver3.fit(tol=1.0e-12, coef_stop=True)

    loss4 = rr.quadratic_loss.shift(Z, coef=0.6*L)
    problem4 = rr.simple_problem(loss4, atom)
    problem4.quadratic = lq
    solver4 = rr.FISTA(problem4)
    solver4.fit(tol=1.0e-12)

    gg_soln = rr.gengrad(problem, L)

    loss6 = rr.quadratic_loss.shift(Z, coef=0.6*L)
    loss6.quadratic = lq + atom.quadratic
    atomcp = copy(atom)
    atomcp.quadratic = rr.identity_quadratic(0,0,0,0)
    problem6 = rr.dual_problem(loss6.conjugate, rr.identity(loss6.shape), atomcp.conjugate)
    problem6.lipschitz = L + atom.quadratic.coef
    dsoln2 = problem6.solve(coef_stop=True, tol=1.e-10, 
                            max_its=100)

    problem2 = rr.container(loss2, atom)
    solver2 = rr.FISTA(problem2)
    solver2.fit(tol=1.0e-12, coef_stop=True)

    q = rr.identity_quadratic(L, Z, 0, 0)

    yield all_close, problem.objective(ww), atom.nonsmooth_objective(ww) + q.objective(ww,'func'), '', None

    atom = rr.l1norm(40, quadratic=atomq, lagrange=0.12)
    aq = atom.solve(q)
    for p, msg in zip([solver3.composite.coefs,
                       gg_soln,
                       solver2.composite.coefs,
                       dsoln2,
                       solver.composite.coefs,
                       solver4.composite.coefs],
                      ['simple_problem with loss having no quadratic',
                       'gen grad',
                       'container with loss having no quadratic',
                       'dual problem with loss having a quadratic',
                       'container with loss having a quadratic',
                       'simple_problem having a quadratic']):
        yield all_close, aq, p, msg, None
Пример #11
0
def test_quadratic_for_smooth2():
    """
    this test is a check to ensure that the
    quadratic part of the smooth functions are being used in the proximal step

    """

    L = 2

    W = np.arange(5)
    Z = 0.5 * np.arange(5)[::-1]
    U = 1.5 * np.arange(5)

    atomq = rr.identity_quadratic(0.4, U, W, 0)
    atom = rr.l1norm(5, quadratic=atomq, lagrange=0.1)

    # specifying in this way should be the same as if we put 0.5*L below
    loss = rr.quadratic.shift(-Z, coef=0.6 * L)
    lq = rr.identity_quadratic(0.4 * L, Z, 0, 0)
    loss.quadratic = lq

    ww = np.ones(5)

    # specifying in this way should be the same as if we put 0.5*L below
    loss2 = rr.quadratic.shift(-Z, coef=L)
    np.testing.assert_allclose(loss2.objective(ww), loss.objective(ww))
    np.testing.assert_allclose(lq.objective(ww, "func"), loss.nonsmooth_objective(ww))
    np.testing.assert_allclose(loss2.smooth_objective(ww, "func"), 0.5 / 0.3 * loss.smooth_objective(ww, "func"))
    np.testing.assert_allclose(loss2.smooth_objective(ww, "grad"), 0.5 / 0.3 * loss.smooth_objective(ww, "grad"))

    problem = rr.container(loss, atom)
    solver = rr.FISTA(problem)
    solver.fit(tol=1.0e-12)

    problem3 = rr.simple_problem(loss, atom)
    solver3 = rr.FISTA(problem3)
    solver3.fit(tol=1.0e-12, coef_stop=True)

    loss4 = rr.quadratic.shift(-Z, coef=0.6 * L)
    problem4 = rr.simple_problem(loss4, atom)
    problem4.quadratic = lq
    solver4 = rr.FISTA(problem4)
    solver4.fit(tol=1.0e-12)

    gg_soln = rr.gengrad(problem4, L)

    loss6 = rr.quadratic.shift(-Z, coef=0.6 * L)
    loss6.quadratic = lq + atom.quadratic
    atomcp = copy(atom)
    atomcp.quadratic = rr.identity_quadratic(0, 0, 0, 0)
    problem6 = rr.dual_problem(loss6.conjugate, rr.identity(loss6.primal_shape), atomcp.conjugate)
    problem6.lipschitz = L + atom.quadratic.coef
    dsoln2 = problem6.solve(coef_stop=True, tol=1.0e-10, max_its=100)

    problem2 = rr.container(loss2, atom)
    solver2 = rr.FISTA(problem2)
    solver2.fit(tol=1.0e-12, coef_stop=True)

    q = rr.identity_quadratic(L, Z, 0, 0)

    ac(problem.objective(ww), atom.nonsmooth_objective(ww) + q.objective(ww, "func"))

    aq = atom.solve(q)
    for p, msg in zip(
        [
            solver3.composite.coefs,
            gg_soln,
            solver2.composite.coefs,
            solver4.composite.coefs,
            dsoln2,
            solver.composite.coefs,
        ],
        [
            "simple_problem with loss having no quadratic",
            "gen grad",
            "container with loss having no quadratic",
            "simple_problem container with quadratic",
            "dual problem with loss having a quadratic",
            "container with loss having a quadratic",
        ],
    ):
        yield ac, aq, p, msg