Пример #1
0
def test_rbm(learning_rate=0.1, training_epochs=15,
             dataset='mnist.pkl.gz', batch_size=20,
             n_chains=20, n_samples=10, output_folder='rbm_plots',
             n_hidden=500):
    """
    Demonstrate how to train and afterwards sample from it using Theano.

    This is demonstrated on MNIST.

    :param learning_rate: learning rate used for training the RBM

    :param training_epochs: number of epochs used for training

    :param dataset: path the the pickled dataset

    :param batch_size: size of a batch used to train the RBM

    :param n_chains: number of parallel Gibbs chains to be used for sampling

    :param n_samples: number of samples to plot for each chain

    """
    datasets = load_data(dataset)

    train_set_x, train_set_y = datasets[0]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()    # index to a [mini]batch
    x = T.matrix('x')  # the data is presented as rasterized images

    rng = numpy.random.RandomState(123)
    theano_rng = RandomStreams(rng.randint(2 ** 30))

    # initialize storage for the persistent chain (state = hidden
    # layer of chain)
    persistent_chain = theano.shared(numpy.zeros((batch_size, n_hidden),
                                                 dtype=theano.config.floatX),
                                     borrow=True)

    # construct the RBM class
    rbm = RBM(input=x, n_visible=28 * 28,
              n_hidden=n_hidden, numpy_rng=rng, theano_rng=theano_rng)

    # get the cost and the gradient corresponding to one step of CD-15
    cost, updates = rbm.get_cost_updates(lr=learning_rate,
                                         persistent=persistent_chain, k=15)

    #################################
    #     Training the RBM          #
    #################################
    if not os.path.isdir(output_folder):
        os.makedirs(output_folder)
    os.chdir(output_folder)

    # it is ok for a theano function to have no output
    # the purpose of train_rbm is solely to update the RBM parameters
    train_rbm = theano.function([index], cost,
           updates=updates,
           givens={x: train_set_x[index * batch_size:
                                  (index + 1) * batch_size]},
           name='train_rbm')

    plotting_time = 0.
    start_time = time.clock()

    # go through training epochs
    for epoch in xrange(training_epochs):

        # go through the training set
        mean_cost = []
        for batch_index in xrange(n_train_batches):
            mean_cost += [train_rbm(batch_index)]

        print 'Training epoch %d, cost is ' % epoch, numpy.mean(mean_cost)

        # Plot filters after each training epoch
        plotting_start = time.clock()
        # Construct image from the weight matrix
        image = PIL.Image.fromarray(tile_raster_images(
                 X=rbm.W.get_value(borrow=True).T,
                 img_shape=(28, 28), tile_shape=(10, 10),
                 tile_spacing=(1, 1)))
        image.save('filters_at_epoch_%i.png' % epoch)
        plotting_stop = time.clock()
        plotting_time += (plotting_stop - plotting_start)

    end_time = time.clock()

    pretraining_time = (end_time - start_time) - plotting_time

    print ('Training took %f minutes' % (pretraining_time / 60.))

    #################################
    #     Sampling from the RBM     #
    #################################
    # find out the number of test samples
    number_of_test_samples = test_set_x.get_value(borrow=True).shape[0]

    # pick random test examples, with which to initialize the persistent chain
    test_idx = rng.randint(number_of_test_samples - n_chains)
    persistent_vis_chain = theano.shared(numpy.asarray(
            test_set_x.get_value(borrow=True)[test_idx:test_idx + n_chains],
            dtype=theano.config.floatX))

    plot_every = 1000
    # define one step of Gibbs sampling (mf = mean-field) define a
    # function that does `plot_every` steps before returning the
    # sample for plotting
    [presig_hids, hid_mfs, hid_samples, presig_vis,
     vis_mfs, vis_samples], updates =  \
                        theano.scan(rbm.gibbs_vhv,
                                outputs_info=[None,  None, None, None,
                                              None, persistent_vis_chain],
                                n_steps=plot_every)

    # add to updates the shared variable that takes care of our persistent
    # chain :.
    updates.update({persistent_vis_chain: vis_samples[-1]})
    # construct the function that implements our persistent chain.
    # we generate the "mean field" activations for plotting and the actual
    # samples for reinitializing the state of our persistent chain
    sample_fn = theano.function([], [vis_mfs[-1], vis_samples[-1]],
                                updates=updates,
                                name='sample_fn')

    # create a space to store the image for plotting ( we need to leave
    # room for the tile_spacing as well)
    image_data = numpy.zeros((29 * n_samples + 1, 29 * n_chains - 1),
                             dtype='uint8')
    for idx in xrange(n_samples):
        # generate `plot_every` intermediate samples that we discard,
        # because successive samples in the chain are too correlated
        vis_mf, vis_sample = sample_fn()
        print ' ... plotting sample ', idx
        image_data[29 * idx:29 * idx + 28, :] = tile_raster_images(
                X=vis_mf,
                img_shape=(28, 28),
                tile_shape=(1, n_chains),
                tile_spacing=(1, 1))
        # construct image

    image = PIL.Image.fromarray(image_data)
    image.save('samples.png')
    os.chdir('../')
Пример #2
0
def test_rbm(learning_rate=0.1,
             training_epochs=15,
             dataset='mnist.pkl.gz',
             batch_size=20,
             n_chains=20,
             n_samples=10,
             output_folder='rbm_plots',
             n_hidden=500):
    """
    Demonstrate how to train and afterwards sample from it using Theano.

    This is demonstrated on MNIST.

    :param learning_rate: learning rate used for training the RBM

    :param training_epochs: number of epochs used for training

    :param dataset: path the the pickled dataset

    :param batch_size: size of a batch used to train the RBM

    :param n_chains: number of parallel Gibbs chains to be used for sampling

    :param n_samples: number of samples to plot for each chain

    """
    datasets = load_data(dataset)

    train_set_x, train_set_y = datasets[0]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch
    x = T.matrix('x')  # the data is presented as rasterized images

    rng = numpy.random.RandomState(123)
    theano_rng = RandomStreams(rng.randint(2**30))

    # initialize storage for the persistent chain (state = hidden
    # layer of chain)
    persistent_chain = theano.shared(numpy.zeros((batch_size, n_hidden),
                                                 dtype=theano.config.floatX),
                                     borrow=True)

    # construct the RBM class
    rbm = RBM(input=x,
              n_visible=28 * 28,
              n_hidden=n_hidden,
              numpy_rng=rng,
              theano_rng=theano_rng)

    # get the cost and the gradient corresponding to one step of CD-15
    cost, updates = rbm.get_cost_updates(lr=learning_rate,
                                         persistent=persistent_chain,
                                         k=15)

    #################################
    #     Training the RBM          #
    #################################
    if not os.path.isdir(output_folder):
        os.makedirs(output_folder)
    os.chdir(output_folder)

    # it is ok for a theano function to have no output
    # the purpose of train_rbm is solely to update the RBM parameters
    train_rbm = theano.function(
        [index],
        cost,
        updates=updates,
        givens={x: train_set_x[index * batch_size:(index + 1) * batch_size]},
        name='train_rbm')

    plotting_time = 0.
    start_time = time.clock()

    # go through training epochs
    for epoch in xrange(training_epochs):

        # go through the training set
        mean_cost = []
        for batch_index in xrange(n_train_batches):
            mean_cost += [train_rbm(batch_index)]

        print 'Training epoch %d, cost is ' % epoch, numpy.mean(mean_cost)

        # Plot filters after each training epoch
        plotting_start = time.clock()
        # Construct image from the weight matrix
        image = PIL.Image.fromarray(
            tile_raster_images(X=rbm.W.get_value(borrow=True).T,
                               img_shape=(28, 28),
                               tile_shape=(10, 10),
                               tile_spacing=(1, 1)))
        image.save('filters_at_epoch_%i.png' % epoch)
        plotting_stop = time.clock()
        plotting_time += (plotting_stop - plotting_start)

    end_time = time.clock()

    pretraining_time = (end_time - start_time) - plotting_time

    print('Training took %f minutes' % (pretraining_time / 60.))

    #################################
    #     Sampling from the RBM     #
    #################################
    # find out the number of test samples
    number_of_test_samples = test_set_x.get_value(borrow=True).shape[0]

    # pick random test examples, with which to initialize the persistent chain
    test_idx = rng.randint(number_of_test_samples - n_chains)
    persistent_vis_chain = theano.shared(
        numpy.asarray(test_set_x.get_value(borrow=True)[test_idx:test_idx +
                                                        n_chains],
                      dtype=theano.config.floatX))

    plot_every = 1000
    # define one step of Gibbs sampling (mf = mean-field) define a
    # function that does `plot_every` steps before returning the
    # sample for plotting
    [presig_hids, hid_mfs, hid_samples, presig_vis,
     vis_mfs, vis_samples], updates =  \
                        theano.scan(rbm.gibbs_vhv,
                                outputs_info=[None,  None, None, None,
                                              None, persistent_vis_chain],
                                n_steps=plot_every)

    # add to updates the shared variable that takes care of our persistent
    # chain :.
    updates.update({persistent_vis_chain: vis_samples[-1]})
    # construct the function that implements our persistent chain.
    # we generate the "mean field" activations for plotting and the actual
    # samples for reinitializing the state of our persistent chain
    sample_fn = theano.function([], [vis_mfs[-1], vis_samples[-1]],
                                updates=updates,
                                name='sample_fn')

    # create a space to store the image for plotting ( we need to leave
    # room for the tile_spacing as well)
    image_data = numpy.zeros((29 * n_samples + 1, 29 * n_chains - 1),
                             dtype='uint8')
    for idx in xrange(n_samples):
        # generate `plot_every` intermediate samples that we discard,
        # because successive samples in the chain are too correlated
        vis_mf, vis_sample = sample_fn()
        print ' ... plotting sample ', idx
        image_data[29 * idx:29 * idx + 28, :] = tile_raster_images(
            X=vis_mf,
            img_shape=(28, 28),
            tile_shape=(1, n_chains),
            tile_spacing=(1, 1))
        # construct image

    image = PIL.Image.fromarray(image_data)
    image.save('samples.png')
    os.chdir('../')
Пример #3
0
def test_mlp(learning_rate=0.01, L1_reg=0.00, L2_reg=0.0001, n_epochs=1000,
             dataset='mnist.pkl.gz', batch_size=20, n_hidden=500):
    """
    Demonstrate stochastic gradient descent optimization for a multilayer
    perceptron

    This is demonstrated on MNIST.

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
    gradient

    :type L1_reg: float
    :param L1_reg: L1-norm's weight when added to the cost (see
    regularization)

    :type L2_reg: float
    :param L2_reg: L2-norm's weight when added to the cost (see
    regularization)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: the path of the MNIST dataset file from
                 http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz


   """
    datasets = load_data(dataset)

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size
    n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print '... building the model'

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch
    x = T.matrix('x')  # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
                        # [int] labels

    rng = numpy.random.RandomState(1234)

    # construct the MLP class
    classifier = MLP(rng=rng, input=x, n_in=28 * 28,
                     n_hidden=n_hidden, n_out=10)

    # the cost we minimize during training is the negative log likelihood of
    # the model plus the regularization terms (L1 and L2); cost is expressed
    # here symbolically
    cost = classifier.negative_log_likelihood(y) \
         + L1_reg * classifier.L1 \
         + L2_reg * classifier.L2_sqr

    # compiling a Theano function that computes the mistakes that are made
    # by the model on a minibatch
    test_model = theano.function(inputs=[index],
            outputs=classifier.errors(y),
            givens={
                x: test_set_x[index * batch_size:(index + 1) * batch_size],
                y: test_set_y[index * batch_size:(index + 1) * batch_size]})

    validate_model = theano.function(inputs=[index],
            outputs=classifier.errors(y),
            givens={
                x: valid_set_x[index * batch_size:(index + 1) * batch_size],
                y: valid_set_y[index * batch_size:(index + 1) * batch_size]})

    # compute the gradient of cost with respect to theta (sotred in params)
    # the resulting gradients will be stored in a list gparams
    gparams = []
    for param in classifier.params:
        gparam = T.grad(cost, param)
        gparams.append(gparam)

    # specify how to update the parameters of the model as a list of
    # (variable, update expression) pairs
    updates = []
    # given two list the zip A = [a1, a2, a3, a4] and B = [b1, b2, b3, b4] of
    # same length, zip generates a list C of same size, where each element
    # is a pair formed from the two lists :
    #    C = [(a1, b1), (a2, b2), (a3, b3), (a4, b4)]
    for param, gparam in zip(classifier.params, gparams):
        updates.append((param, param - learning_rate * gparam))

    # compiling a Theano function `train_model` that returns the cost, but
    # in the same time updates the parameter of the model based on the rules
    # defined in `updates`
    train_model = theano.function(inputs=[index], outputs=cost,
            updates=updates,
            givens={
                x: train_set_x[index * batch_size:(index + 1) * batch_size],
                y: train_set_y[index * batch_size:(index + 1) * batch_size]})

    ###############
    # TRAIN MODEL #
    ###############
    print '... training'

    # early-stopping parameters
    patience = 10000  # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is
                           # found
    improvement_threshold = 0.995  # a relative improvement of this much is
                                   # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
                                  # go through this many
                                  # minibatche before checking the network
                                  # on the validation set; in this case we
                                  # check every epoch

    best_params = None
    best_validation_loss = numpy.inf
    best_iter = 0
    test_score = 0.
    start_time = time.clock()

    epoch = 0
    done_looping = False

    while (epoch < n_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in xrange(n_train_batches):

            minibatch_avg_cost = train_model(minibatch_index)
            # iteration number
            iter = (epoch - 1) * n_train_batches + minibatch_index

            if (iter + 1) % validation_frequency == 0:
                # compute zero-one loss on validation set
                validation_losses = [validate_model(i) for i
                                     in xrange(n_valid_batches)]
                this_validation_loss = numpy.mean(validation_losses)

                print('epoch %i, minibatch %i/%i, validation error %f %%' %
                     (epoch, minibatch_index + 1, n_train_batches,
                      this_validation_loss * 100.))

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:
                    #improve patience if loss improvement is good enough
                    if this_validation_loss < best_validation_loss *  \
                           improvement_threshold:
                        patience = max(patience, iter * patience_increase)

                    best_validation_loss = this_validation_loss
                    best_iter = iter

                    # test it on the test set
                    test_losses = [test_model(i) for i
                                   in xrange(n_test_batches)]
                    test_score = numpy.mean(test_losses)

                    print(('     epoch %i, minibatch %i/%i, test error of '
                           'best model %f %%') %
                          (epoch, minibatch_index + 1, n_train_batches,
                           test_score * 100.))

            if patience <= iter:
                    done_looping = True
                    break

    end_time = time.clock()
    print(('Optimization complete. Best validation score of %f %% '
           'obtained at iteration %i, with test performance %f %%') %
          (best_validation_loss * 100., best_iter + 1, test_score * 100.))
    print >> sys.stderr, ('The code for file ' +
                          os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((end_time - start_time) / 60.))