Пример #1
0
def get_train_loader(dataset, height, width, batch_size, workers,
                    num_instances, iters, trainset=None):

    normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    train_transformer = T.Compose([
             T.Resize((height, width), interpolation=3),
             T.RandomHorizontalFlip(p=0.5),
             T.Pad(10),
             T.RandomCrop((height, width)),
             T.ToTensor(),
             normalizer,
             T.RandomErasing(probability=0.5, mean=[0.485, 0.456, 0.406])
         ])

    train_set = dataset.train if trainset is None else trainset
    rmgs_flag = num_instances > 0
    if rmgs_flag:
        sampler = RandomMultipleGallerySampler(train_set, num_instances)
    else:
        sampler = None
    train_loader = IterLoader(
                DataLoader(Preprocessor(train_set, root=dataset.images_dir,
                                        transform=train_transformer, mutual=False),
                            batch_size=batch_size, num_workers=workers, sampler=sampler,
                            shuffle=not rmgs_flag, pin_memory=True, drop_last=True), length=iters)

    return train_loader
Пример #2
0
def get_data(name, split_id, data_dir, height, width, batch_size,
             num_instances, workers, combine_trainval):
    root = osp.join(data_dir, name)

    dataset = datasets.create(name, root, num_val=0.1, split_id=split_id)

    normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])

    train_set = dataset.trainval if combine_trainval else dataset.train
    num_classes = (dataset.num_trainval_ids
                   if combine_trainval else dataset.num_train_ids)

    train_transformer = T.Compose([
        Resize((256, 128)),
        T.RandomSizedRectCrop(height, width),
        T.RandomHorizontalFlip(),
        T.ToTensor(), normalizer,
        T.RandomErasing(probability=0.5, sh=0.2, r1=0.3)
    ])

    test_transformer = T.Compose([
        T.RectScale(height, width),
        T.ToTensor(),
        normalizer,
    ])

    train_loader = DataLoader(Preprocessor(train_set,
                                           root=dataset.images_dir,
                                           transform=train_transformer),
                              batch_size=batch_size,
                              num_workers=workers,
                              sampler=RandomIdentitySampler(
                                  train_set, num_instances),
                              pin_memory=True,
                              drop_last=True)

    val_loader = DataLoader(Preprocessor(dataset.val,
                                         root=dataset.images_dir,
                                         transform=test_transformer),
                            batch_size=batch_size,
                            num_workers=workers,
                            shuffle=False,
                            pin_memory=True)

    test_loader = DataLoader(Preprocessor(
        list(set(dataset.query) | set(dataset.gallery)),
        root=dataset.images_dir,
        transform=test_transformer),
                             batch_size=batch_size,
                             num_workers=workers,
                             shuffle=False,
                             pin_memory=True)

    return dataset, num_classes, train_loader, val_loader, test_loader
def get_data(dataname, data_dir, height, width, batch_size, camstyle=0, re=0, workers=8):
    root = osp.join(data_dir, dataname)

    dataset = datasets.create(dataname, root)

    normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])

    num_classes = dataset.num_train_ids

    train_transformer = T.Compose([
        T.RandomSizedRectCrop(height, width),
        T.RandomHorizontalFlip(),
        T.ToTensor(),
        normalizer,
        T.RandomErasing(EPSILON=re),
    ])

    test_transformer = T.Compose([
        T.Resize((height, width), interpolation=3),
        T.ToTensor(),
        normalizer,
    ])

    train_loader = DataLoader(
        Preprocessor(dataset.train, root=osp.join(dataset.images_dir, dataset.train_path),
                     transform=train_transformer),
        batch_size=batch_size, num_workers=workers,
        shuffle=True, pin_memory=True, drop_last=True)

    query_loader = DataLoader(
        Preprocessor(dataset.query,
                     root=osp.join(dataset.images_dir, dataset.query_path), transform=test_transformer),
        batch_size=batch_size, num_workers=workers,
        shuffle=False, pin_memory=True)

    gallery_loader = DataLoader(
        Preprocessor(dataset.gallery,
                     root=osp.join(dataset.images_dir, dataset.gallery_path), transform=test_transformer),
        batch_size=batch_size, num_workers=workers,
        shuffle=False, pin_memory=True)
    
    if camstyle <= 0:
        camstyle_loader = None
    else:
        camstyle_loader = DataLoader(
            Preprocessor(dataset.camstyle, root=osp.join(dataset.images_dir, dataset.camstyle_path),
                         transform=train_transformer),
            batch_size=camstyle, num_workers=workers,
            shuffle=True, pin_memory=True, drop_last=True)

    return dataset, num_classes, train_loader, query_loader, gallery_loader, camstyle_loader
Пример #4
0
def get_data(data_dir, source, target, height, width, batch_size, re=0, workers=8):

    dataset = DA(data_dir, source, target)

    normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])

    num_classes = dataset.num_train_ids

    train_transformer = T.Compose([
        T.RandomSizedRectCrop(height, width),
        T.RandomHorizontalFlip(),
        T.ToTensor(),
        normalizer,
        T.RandomErasing(EPSILON=re),
    ])

    test_transformer = T.Compose([
        T.Resize((height, width), interpolation=3),
        T.ToTensor(),
        normalizer,
    ])

    source_train_loader = DataLoader(
        Preprocessor(dataset.source_train, root=osp.join(dataset.source_images_dir, dataset.source_train_path),
                     transform=train_transformer),
        batch_size=batch_size, num_workers=workers,
        shuffle=True, pin_memory=True, drop_last=True)

    target_train_loader = DataLoader(
        UnsupervisedCamStylePreprocessor(dataset.target_train,
                                         root=osp.join(dataset.target_images_dir, dataset.target_train_path),
                                         camstyle_root=osp.join(dataset.target_images_dir,
                                                                dataset.target_train_camstyle_path),
                                         num_cam=dataset.target_num_cam, transform=train_transformer),
        batch_size=batch_size, num_workers=workers,
        shuffle=True, pin_memory=True, drop_last=True)

    query_loader = DataLoader(
        Preprocessor(dataset.query,
                     root=osp.join(dataset.target_images_dir, dataset.query_path), transform=test_transformer),
        batch_size=batch_size, num_workers=workers,
        shuffle=False, pin_memory=True)

    gallery_loader = DataLoader(
        Preprocessor(dataset.gallery,
                     root=osp.join(dataset.target_images_dir, dataset.gallery_path), transform=test_transformer),
        batch_size=batch_size, num_workers=workers,
        shuffle=False, pin_memory=True)

    return dataset, num_classes, source_train_loader, target_train_loader, query_loader, gallery_loader
Пример #5
0
def get_data(name, split_id, data_dir, big_height, big_width, target_height,
             target_width, batch_size, num_instances, workers,
             combine_trainval):
    root = osp.join(data_dir, name)

    dataset = datasets.create(name, root, split_id=split_id, download=True)

    normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])

    train_set = dataset.trainval if combine_trainval else dataset.train
    num_classes = (dataset.num_trainval_ids
                   if combine_trainval else dataset.num_train_ids)

    train_transformer = T.Compose([
        T.ResizeRandomCrop(big_height, big_width, target_height, target_width),
        T.RandomHorizontalFlip(),
        T.ToTensor(),
        normalizer,
        T.RandomErasing(0.5),
    ])

    test_transformer = T.Compose([
        T.RectScale(target_height, target_width),
        T.ToTensor(),
        normalizer,
    ])

    train_loader = DataLoader(
        Attribute_Preprocessor(train_set,
                               root=dataset.images_dir,
                               transform=train_transformer),
        batch_size=batch_size,
        num_workers=workers,
        sampler=RandomIdentityAttributeSampler(train_set, num_instances),
        pin_memory=True,
        drop_last=True)

    test_loader = DataLoader(Attribute_Preprocessor(
        list(set(dataset.query) | set(dataset.gallery)),
        root=dataset.images_dir,
        transform=test_transformer),
                             batch_size=batch_size,
                             num_workers=workers,
                             shuffle=False,
                             pin_memory=True)

    return dataset, num_classes, train_loader, test_loader
Пример #6
0
def get_data(sourceName, mteName, split_id, data_dir, height, width,
             batch_size, workers, combine,num_instances=8):
    root = osp.join(data_dir, sourceName)
    rootMte = osp.join(data_dir, mteName)
    sourceSet = datasets.create(sourceName, root, num_val=0.1, split_id=split_id)
    mteSet = datasets.create(mteName, rootMte, num_val=0.1, split_id=split_id)

    num_classes = sourceSet.num_trainval_ids if combine else sourceSet.num_train_ids
    class_meta = mteSet.num_trainval_ids if combine else mteSet.num_train_ids

    normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])

    test_transformer = T.Compose([
        T.RectScale(height, width),
        T.ToTensor(),
        normalizer,
    ])
    defen_train_transformer = T.Compose([
        Resize((height, width)),
        T.RandomSizedRectCrop(height, width),
        T.RandomHorizontalFlip(),
        T.ToTensor(),
        normalizer,
        T.RandomErasing(probability=0.5, sh=0.2, r1=0.3)
    ])
    meta_train_loader = DataLoader(
        Preprocessor(sourceSet.trainval,  root=sourceSet.images_dir,
                     transform=defen_train_transformer),
        batch_size=batch_size, num_workers=workers,
        sampler=RandomIdentitySampler(sourceSet.trainval, num_instances),
        pin_memory=True, drop_last=True)

    meta_test_loader=DataLoader(
        Preprocessor(mteSet.trainval, root=mteSet.images_dir,
                     transform=defen_train_transformer),
        batch_size=batch_size, num_workers=workers,
        sampler=RandomIdentitySampler(mteSet.trainval, num_instances),
        pin_memory=True, drop_last=True)

    sc_test_loader = DataLoader(
        Preprocessor(list(set(sourceSet.query) | set(sourceSet.gallery)),
                     root=sourceSet.images_dir, transform=test_transformer),
        batch_size=batch_size, num_workers=workers,
        shuffle=False, pin_memory=True)

    return sourceSet, mteSet, num_classes, meta_train_loader, meta_test_loader,sc_test_loader,class_meta
Пример #7
0
    def get_dataloader(self, dataset, training=False):
        normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])

        if training:
            transformer = T.Compose([
                T.RandomSizedRectCrop(self.data_height, self.data_width),
                T.RandomHorizontalFlip(),
                T.ToTensor(), normalizer,
                T.RandomErasing(probability=0.5, sh=0.2, r1=0.3)
            ])

        else:
            transformer = T.Compose([
                T.Resize((self.data_height, self.data_width)),
                T.ToTensor(),
                normalizer,
            ])
        if training and self.num_classes == 0:
            data_loader = DataLoader(Preprocessor(dataset,
                                                  root='',
                                                  transform=transformer),
                                     batch_size=self.batch_size,
                                     num_workers=self.data_workers,
                                     sampler=RandomIdentitySampler(
                                         dataset, self.num_instances),
                                     pin_memory=True,
                                     drop_last=training)
        else:
            data_loader = DataLoader(Preprocessor(dataset,
                                                  root='',
                                                  transform=transformer),
                                     batch_size=self.batch_size,
                                     num_workers=self.data_workers,
                                     shuffle=training,
                                     pin_memory=True,
                                     drop_last=training)

        current_status = "Training" if training else "Test"
        print("create dataloader for {} with batch_size {}".format(
            current_status, self.batch_size))
        return data_loader
Пример #8
0
def main(args):
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    cudnn.benchmark = True

    # Redirect print to both console and log file
    if not args.evaluate:
        sys.stdout = Logger(osp.join(args.logs_dir, 'log.txt'))

    # Create data loaders
    assert args.num_instances > 1, "num_instances should be greater than 1"
    assert args.batch_size % args.num_instances == 0, \
        'num_instances should divide batch_size'
    if args.height is None or args.width is None:
        args.height, args.width = (144, 56) if args.arch == 'inception' else \
                                  (256, 128)

    ## get_source_data
    src_dataset, src_extfeat_loader = \
        get_source_data(args.src_dataset, args.data_dir, args.height,
                        args.width, args.batch_size, args.workers)
    # get_target_data
    tgt_dataset, num_classes, tgt_extfeat_loader, test_loader = \
        get_data(args.tgt_dataset, args.data_dir, args.height,
                 args.width, args.batch_size, args.workers)

    # Create model
    # Hacking here to let the classifier be the last feature embedding layer
    # Net structure: avgpool -> FC(2048) -> FC(args.features)
    num_class = 0
    if args.src_dataset == 'dukemtmc':
        model = models.create(args.arch, num_classes=num_class, num_split=args.num_split, cluster=args.dce_loss) #duke
    elif args.src_dataset == 'market1501':
        model = models.create(args.arch, num_classes=num_class, num_split=args.num_split, cluster=args.dce_loss)
    else:
        raise RuntimeError('Please specify the number of classes (ids) of the network.')
    
    # Load from checkpoint
    start_epoch = best_top1 = 0
    if args.resume:
        print('Resuming checkpoints from finetuned model on another dataset...\n')
        checkpoint = load_checkpoint(args.resume)
        model.load_state_dict(checkpoint, strict=False)
    else:
        raise RuntimeWarning('Not using a pre-trained model')
    model = nn.DataParallel(model).cuda()
   
    # Distance metric
    metric = DistanceMetric(algorithm=args.dist_metric)

    # Evaluator
    evaluator = Evaluator(model, print_freq=args.print_freq)
    print("Test with the original model trained on source domain:")
    best_top1 = evaluator.evaluate(test_loader, tgt_dataset.query, tgt_dataset.gallery)
    if args.evaluate:
        return

    # Criterion
    criterion = []
    criterion.append(TripletLoss(margin=args.margin,num_instances=args.num_instances).cuda())
    criterion.append(TripletLoss(margin=args.margin,num_instances=args.num_instances).cuda())

    #multi lr
    base_param_ids = set(map(id, model.module.base.parameters()))
    new_params = [p for p in model.parameters() if
                  id(p) not in base_param_ids]
    param_groups = [
        {'params': model.module.base.parameters(), 'lr_mult': 1.0},
        {'params': new_params, 'lr_mult': 1.0}]
    # Optimizer
    optimizer = torch.optim.SGD(param_groups, lr=args.lr,
                                momentum=0.9, weight_decay=args.weight_decay)    

    ##### adjust lr
    def adjust_lr(epoch):
        if epoch <= 7:
            lr = args.lr
        elif epoch <=14:
            lr = 0.3 * args.lr
        else:
            lr = 0.1 * args.lr
        for g in optimizer.param_groups:
            g['lr'] = lr * g.get('lr_mult', 1)

    ##### training stage transformer on input images
    normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    train_transformer = T.Compose([
        Resize((args.height,args.width)),
        T.RandomHorizontalFlip(),
        T.ToTensor(),
        normalizer,
        T.RandomErasing(probability=0.5, sh=0.2, r1=0.3)
    ])

    # Start training
    iter_nums = args.iteration
    start_epoch = args.start_epoch
    cluster_list = []
    top_percent = args.rho
    EF = 100 // iter_nums + 1
    eug = None
    for iter_n in range(start_epoch, iter_nums):
        #### get source datas' feature
        if args.load_dist and iter_n == 0:
            dist = pickle.load(open('dist' + str(args.num_split) + '.pkl', 'rb'))
            euclidean_dist_list = dist['euclidean']
            rerank_dist_list = dist['rerank']
        else:
            source_features, _ = extract_features(model, src_extfeat_loader, for_eval=False)
            if isinstance(source_features[src_dataset.trainval[0][0]], list):
                len_f = len(source_features[src_dataset.trainval[0][0]])
                source_features = [torch.cat([source_features[f][i].unsqueeze(0) for f, _, _ in src_dataset.trainval], 0) for i in range(len_f)]
            else:
                source_features = torch.cat([source_features[f].unsqueeze(0) for f, _, _ in src_dataset.trainval], 0) # synchronization feature order with s_dataset.trainval
            #### extract training images' features
            print('Iteration {}: Extracting Target Dataset Features...'.format(iter_n+1))
            target_features, _ = extract_features(model, tgt_extfeat_loader, for_eval=False)
            if isinstance(target_features[tgt_dataset.trainval[0][0]], list):
                len_f = len(target_features[tgt_dataset.trainval[0][0]])
                target_features = [torch.cat([target_features[f][i].unsqueeze(0) for f, _, _ in tgt_dataset.trainval], 0) for i in range(len_f)]
            else:
                target_features = torch.cat([target_features[f].unsqueeze(0) for f, _, _ in tgt_dataset.trainval], 0) # synchronization feature order with dataset.trainval
            #### calculate distance and rerank result
            print('Calculating feature distances...') 
            # target_features = target_features.numpy()
            euclidean_dist_list, rerank_dist_list = compute_dist(
                source_features, target_features, lambda_value=args.lambda_value, no_rerank=args.no_rerank, num_split=args.num_split) # lambda=1 means only source dist
            del target_features
            del source_features
        
        labels_list, cluster_list = generate_selflabel(
            euclidean_dist_list, rerank_dist_list, iter_n, args, cluster_list)
        #### generate new dataset
        train_loader = generate_dataloader(tgt_dataset, labels_list, train_transformer, iter_n, args)

        if iter_n == 5:
            u_data, l_data = updata_lable(tgt_dataset, labels_list[0], args.tgt_dataset, sample=args.sample)
            eug = EUG(model_name=args.arch, batch_size=args.batch_size, mode=args.mode, num_classes=num_class, 
            data_dir=args.data_dir, l_data=l_data, u_data=u_data, print_freq=args.print_freq, 
            save_path=args.logs_dir, pretrained_model=model, rerank=True)
            eug.model = model

        if eug is not None:
            nums_to_select = int(min((iter_n + 1) * int(len(u_data) // (iter_nums)), len(u_data)))
            pred_y, pred_score = eug.estimate_label()
            
            print('This is running {} with EF= {}%, step {}:\t Nums_to_be_select {}, \t Logs-dir {}'.format(
                args.mode, EF, iter_n+1, nums_to_select, args.logs_dir
            ))
            selected_idx = eug.select_top_data(pred_score, nums_to_select)
            new_train_data = eug.generate_new_train_data(selected_idx, pred_y)
            eug_dataloader = eug.get_dataloader(new_train_data, training=True)

            top1 = iter_trainer(model, tgt_dataset, train_loader, eug_dataloader, test_loader, optimizer, 
                criterion, args.epochs, args.logs_dir, args.print_freq, args.lr)
            eug.model = model
            del train_loader
            # del eug_dataloader
        else:
            top1 = iter_trainer(model, tgt_dataset, train_loader, None, test_loader, optimizer, 
            criterion, args.epochs, args.logs_dir, args.print_freq, args.lr)
            del train_loader

        is_best = top1 > best_top1
        best_top1 = max(top1, best_top1)
        save_checkpoint({
            'state_dict': model.module.state_dict(),
            'epoch': iter_n + 1,
            'best_top1': best_top1,
            # 'num_ids': num_ids,
        }, is_best, fpath=osp.join(args.logs_dir, 'checkpoint.pth.tar'))

        print('\n * Finished epoch {:3d}  top1: {:5.1%}  best: {:5.1%}{}\n'.
              format(iter_n+1, top1, best_top1, ' *' if is_best else ''))
Пример #9
0
def main(args):
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    cudnn.benchmark = True

    # Create data loaders
    assert args.num_instances > 1, "num_instances should be greater than 1"
    assert args.batch_size % args.num_instances == 0, \
        'num_instances should divide batch_size'
    if args.height is None or args.width is None:
        args.height, args.width = (144, 56) if args.arch == 'inception' else \
                                  (256, 128)

    # get source data
    src_dataset, src_extfeat_loader = \
        get_source_data(args.src_dataset, args.data_dir, args.height,
                        args.width, args.batch_size, args.workers)
    # get target data
    tgt_dataset, num_classes, tgt_extfeat_loader, test_loader = \
        get_data(args.tgt_dataset, args.data_dir, args.height,
                 args.width, args.batch_size, args.workers)

    # Create model
    # Hacking here to let the classifier be the number of source ids
    if args.src_dataset == 'dukemtmc':
        model = models.create(args.arch, num_classes=632, pretrained=False)
    elif args.src_dataset == 'market1501':
        model = models.create(args.arch, num_classes=676, pretrained=False)
    else:
        raise RuntimeError('Please specify the number of classes (ids) of the network.')

    # Load from checkpoint
    if args.resume:
        print('Resuming checkpoints from finetuned model on another dataset...\n')
        checkpoint = load_checkpoint(args.resume)
        model.load_state_dict(checkpoint['state_dict'], strict=False)
    else:
        raise RuntimeWarning('Not using a pre-trained model.')
    model = nn.DataParallel(model).cuda()

    # evaluator.evaluate(test_loader, tgt_dataset.query, tgt_dataset.gallery)
    # if args.evaluate: return

    # Criterion
    criterion = [
        # TripletLoss(args.margin, args.num_instances, isAvg=True, use_semi=True).cuda(),
        SortedTripletLoss(args.margin, isAvg=True).cuda(),
        # HoughTripletLoss(args.margin, args.num_instances, isAvg=True, use_semi=True).cuda(),
        # None,
        None, None, None
    ]


    # Optimizer
    optimizer = torch.optim.Adam(
        model.parameters(), lr=args.lr
    )


    # training stage transformer on input images
    normalizer = T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
    train_transformer = T.Compose([
        T.Resize((args.height,args.width)),
        T.RandomHorizontalFlip(),
        T.ToTensor(), normalizer,
        T.RandomErasing(probability=0.5, sh=0.2, r1=0.3)
    ])

    evaluator = Evaluator(model, print_freq=args.print_freq)
    evaluator.evaluate(test_loader, tgt_dataset.query, tgt_dataset.gallery)

    st_model = ST_Model(tgt_dataset.meta['num_cameras'])
    same = None
    # train_loader2 = None
    best_mAP = 0

    # # Start training
    for iter_n in range(args.iteration):
        if args.lambda_value == 0:
            source_features = 0
        else:
            # get source datas' feature
            source_features, _ = extract_features(model, src_extfeat_loader, print_freq=args.print_freq)
            # synchronization feature order with src_dataset.train
            source_features = torch.cat([source_features[f].unsqueeze(0) for f, _, _, _ in src_dataset.train], 0)

        # extract training images' features
        print('Iteration {}: Extracting Target Dataset Features...'.format(iter_n+1))
        target_features, tarNames = extract_features(model, tgt_extfeat_loader, print_freq=args.print_freq)
        # synchronization feature order with dataset.train
        target_features = torch.cat([target_features[f].unsqueeze(0) for f, _, _, _ in tgt_dataset.trainval], 0)
        # target_real_label = np.asarray([tarNames[f].unsqueeze(0) for f, _, _, _ in tgt_dataset.trainval])

        target_features = target_features.numpy()
        rerank_dist = re_ranking(source_features, target_features, lambda_value=args.lambda_value)

        ranking = np.argsort(rerank_dist)[:, 1:]

        if iter_n != 0:
            st_dist = np.zeros(rerank_dist.shape)
            for i, (_, _, c1, t1) in enumerate(tgt_dataset.trainval):
                for j, (_, _, c2, t2) in enumerate(tgt_dataset.trainval):
                    if not same.in_peak(c1, c2, t1, t2, 0.25):
                        st_dist[i, j] = 1

            rerank_dist = rerank_dist + st_dist * 10

        # if iter_n > 0:
        #     rerank_dist = st_model.apply(rerank_dist, tgt_dataset.trainval, tgt_dataset.trainval)

        cluster = HDBSCAN(metric='precomputed', min_samples=10)
        # select & cluster images as training set of this epochs
        clusterRes = cluster.fit(rerank_dist.astype(np.float64))
        labels, label_num = clusterRes.labels_, clusterRes.labels_.max() + 1
        centers = np.zeros((label_num, target_features.shape[1]))
        nums = [0] * target_features.shape[1]
        print('clusters num =', label_num)

        # generate new dataset
        new_dataset = []
        index = -1
        for (fname, _, cam, timestamp), label in zip(tgt_dataset.trainval, labels):
            index += 1
            if label == -1: continue
            # dont need to change codes in trainer.py _parsing_input function and sampler function after add 0
            new_dataset.append((fname, label, cam, timestamp))
            centers[label] += target_features[index]
            nums[label] += 1
        print('Iteration {} have {} training images'.format(iter_n+1, len(new_dataset)))

        # learn ST model
        # if iter_n % 2 == 0:
        # if iter_n == 0:
            # cluster = HDBSCAN(metric='precomputed', min_samples=10)
            # # select & cluster images as training set of this epochs
            # clusterRes = cluster.fit(rerank_dist.astype(np.float64))
            # labels, label_num = clusterRes.labels_, clusterRes.labels_.max() + 1
            # centers = np.zeros((label_num, target_features.shape[1]))
            # nums = [0] * target_features.shape[1]
            # print('clusters num =', label_num)
            #
            # # generate new dataset
            # new_dataset = []
            # index = -1
            # for (fname, _, cam, timestamp), label in zip(tgt_dataset.trainval, labels):
            #     index += 1
            #     if label == -1: continue
            #     # dont need to change codes in trainer.py _parsing_input function and sampler function after add 0
            #     new_dataset.append((fname, label, cam, timestamp))
            #     centers[label] += target_features[index]
            #     nums[label] += 1
            # print('Iteration {} have {} training images'.format(iter_n + 1, len(new_dataset)))

            # same, _ = st_model.fit(new_dataset)
        # st_model.fit(tgt_dataset.trainval)
        same, _ = st_model.fit(new_dataset)

        train_loader = DataLoader(
            Preprocessor(new_dataset, root=tgt_dataset.images_dir, transform=train_transformer),
            batch_size=args.batch_size, num_workers=4,
            sampler=RandomIdentitySampler(new_dataset, args.num_instances),
            pin_memory=True, drop_last=True
        )

        def filter(i, j):
            _, _, c1, t1 = tgt_dataset.trainval[i]
            _, _, c2, t2 = tgt_dataset.trainval[j]
            return st_model.val(c1, c2, t1, t2) > 0.01

        # if iter_n == 0:
        #     ranking = np.argsort(rerank_dist)[:, 1:]

        # dukemtmc
        # cluster_size = 23.535612535612536

        # market1501
        cluster_size = 17.22503328894807

        must_conn = int(cluster_size / 2)
        might_conn = int(cluster_size * 2)

        length = len(tgt_dataset.trainval)
        pos = [[] for _ in range(length)]
        neg = [[] for _ in range(length)]
        for i in range(length):
            for j_ in range(might_conn):
                j = ranking[i][j_]
                if j_ < must_conn and i in ranking[j][:must_conn]:
                    pos[i].append(j)
                elif i in ranking[j][:might_conn] and filter(i, j):
                    pos[i].append(j)
                else:
                    neg[i].append(j)
            # pos[i] = pos[i][-1:]
            # neg[i] = neg[i][:1]

        SP, SF, DP, DF = 0, 0, 0, 0
        for i in range(length):
            for j in pos[i]:
                if tgt_dataset.trainval[i][1] == tgt_dataset.trainval[j][1]:
                    SP += 1
                else:
                    SF += 1
            for j in neg[i]:
                if tgt_dataset.trainval[i][1] == tgt_dataset.trainval[j][1]:
                    DP += 1
                else:
                    DF += 1
        print('stat: %.1f %.1f %.3f, %.3f' % ((SP + SF) / length, (DP + DF) / length, SP / (SP + SF), DF / (DP + DF)))

        train_loader2 = DataLoader(
            Preprocessor(tgt_dataset.trainval, root=tgt_dataset.images_dir, transform=train_transformer),
            batch_size=args.batch_size, num_workers=4,
            # sampler=RandomIdentitySampler(new_dataset, args.num_instances),
            # shuffle=True,
            sampler=TripletSampler(tgt_dataset.trainval, pos, neg),
            pin_memory=True, drop_last=True
        )

        # learn visual model
        for i in range(label_num):
            centers[i] /= nums[i]
        criterion[3] = ClassificationLoss(normalize(centers, axis=1)).cuda()

        classOptimizer = torch.optim.Adam([
            {'params': model.parameters()},
            {'params': criterion[3].classifier.parameters(), 'lr': 1e-3}
        ], lr=args.lr)

        # trainer = HoughTrainer(model, st_model, train_loader, criterion, classOptimizer)
        trainer = ClassificationTrainer(model, train_loader, criterion, classOptimizer)
        trainer2 = Trainer(model, train_loader2, criterion, optimizer)

        for epoch in range(args.epochs):
            trainer.train(epoch)
            if epoch % 8 == 0:
                trainer2.train(epoch)
            # evaluator.evaluate(test_loader, tgt_dataset.query, tgt_dataset.gallery)

        rank_score = evaluator.evaluate(test_loader, tgt_dataset.query, tgt_dataset.gallery)
        if rank_score.map > best_mAP:
            best_mAP = rank_score.map
            save_checkpoint({
                    'state_dict': model.module.state_dict(),
                    'epoch': epoch + 1, 'best_top1': rank_score.market1501[0],
                }, True, fpath=osp.join(args.logs_dir, 'adapted.pth.tar'))

    # Evaluate
    rank_score = evaluator.evaluate(test_loader, tgt_dataset.query, tgt_dataset.gallery)
    save_checkpoint({
                'state_dict': model.module.state_dict(),
                'epoch': epoch + 1, 'best_top1': rank_score.market1501[0],
        }, False, fpath=osp.join(args.logs_dir, 'adapted.pth.tar'))
    return (rank_score.map, rank_score.market1501[0])
Пример #10
0
def main(args):
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    cudnn.benchmark = True

    # Create data loaders
    assert args.num_instances > 1, "num_instances should be greater than 1"
    assert args.batch_size % args.num_instances == 0, \
        'num_instances should divide batch_size'
    if args.height is None or args.width is None:
        args.height, args.width = (144, 56) if args.arch == 'inception' else \
                                  (256, 128)

    # get source data
    src_dataset, src_extfeat_loader = \
        get_source_data(args.src_dataset, args.data_dir, args.height,
                        args.width, args.batch_size, args.workers)
    # get target data
    tgt_dataset, num_classes, tgt_extfeat_loader, test_loader = \
        get_data(args.tgt_dataset, args.data_dir, args.height,
                 args.width, args.batch_size, args.workers)

    # Create model
    # Hacking here to let the classifier be the number of source ids
    if args.src_dataset == 'dukemtmc':
        model = models.create(args.arch, num_classes=632, pretrained=False)
    elif args.src_dataset == 'market1501':
        model = models.create(args.arch, num_classes=676, pretrained=False)
    else:
        raise RuntimeError(
            'Please specify the number of classes (ids) of the network.')

    # Load from checkpoint
    if args.resume:
        print(
            'Resuming checkpoints from finetuned model on another dataset...\n'
        )
        checkpoint = load_checkpoint(args.resume)
        model.load_state_dict(checkpoint['state_dict'], strict=False)
    else:
        raise RuntimeWarning('Not using a pre-trained model.')
    model = nn.DataParallel(model).cuda()

    # Distance metric
    metric = DistanceMetric(algorithm=args.dist_metric)

    # Evaluator
    evaluator = Evaluator(model, print_freq=args.print_freq)
    print(
        "Test with the original model trained on target domain (direct transfer):"
    )
    evaluator.evaluate(test_loader, tgt_dataset.query, tgt_dataset.gallery)
    if args.evaluate:
        return

    # Criterion
    criterion = [
        TripletLoss(args.margin, args.num_instances).cuda(),
        TripletLoss(args.margin, args.num_instances).cuda(),
    ]

    # Optimizer
    optimizer = torch.optim.SGD(
        model.parameters(),
        lr=args.lr,
        momentum=0.9,
    )

    # training stage transformer on input images
    normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    train_transformer = T.Compose([
        T.Resize((args.height, args.width)),
        T.RandomHorizontalFlip(),
        T.ToTensor(), normalizer,
        T.RandomErasing(probability=0.5, sh=0.2, r1=0.3)
    ])

    # Start training
    for iter_n in range(args.iteration):
        if args.lambda_value == 0:
            source_features = 0
        else:
            # get source datas' feature
            source_features, _ = extract_features(model,
                                                  src_extfeat_loader,
                                                  print_freq=args.print_freq)
            # synchronization feature order with src_dataset.train
            source_features = torch.cat([
                source_features[f].unsqueeze(0)
                for f, _, _ in src_dataset.train
            ], 0)

        # extract training images' features
        print('Iteration {}: Extracting Target Dataset Features...'.format(
            iter_n + 1))
        target_features, _ = extract_features(model,
                                              tgt_extfeat_loader,
                                              print_freq=args.print_freq)
        # synchronization feature order with dataset.train
        target_features = torch.cat([
            target_features[f].unsqueeze(0) for f, _, _ in tgt_dataset.trainval
        ], 0)
        # calculate distance and rerank result
        print('Calculating feature distances...')
        target_features = target_features.numpy()
        rerank_dist = re_ranking(source_features,
                                 target_features,
                                 lambda_value=args.lambda_value)
        if iter_n == 0:
            # DBSCAN cluster
            tri_mat = np.triu(rerank_dist, 1)  # tri_mat.dim=2
            tri_mat = tri_mat[np.nonzero(tri_mat)]  # tri_mat.dim=1
            tri_mat = np.sort(tri_mat, axis=None)
            top_num = np.round(args.rho * tri_mat.size).astype(int)
            eps = tri_mat[:top_num].mean()
            print('eps in cluster: {:.3f}'.format(eps))
            cluster = DBSCAN(eps=eps,
                             min_samples=4,
                             metric='precomputed',
                             n_jobs=8)

        # select & cluster images as training set of this epochs
        print('Clustering and labeling...')
        labels = cluster.fit_predict(rerank_dist)
        num_ids = len(set(labels)) - 1
        print('Iteration {} have {} training ids'.format(iter_n + 1, num_ids))
        # generate new dataset
        new_dataset = []
        for (fname, _, _), label in zip(tgt_dataset.trainval, labels):
            if label == -1:
                continue
            # dont need to change codes in trainer.py _parsing_input function and sampler function after add 0
            new_dataset.append((fname, label, 0))
        print('Iteration {} have {} training images'.format(
            iter_n + 1, len(new_dataset)))

        train_loader = DataLoader(Preprocessor(new_dataset,
                                               root=tgt_dataset.images_dir,
                                               transform=train_transformer),
                                  batch_size=args.batch_size,
                                  num_workers=4,
                                  sampler=RandomIdentitySampler(
                                      new_dataset, args.num_instances),
                                  pin_memory=True,
                                  drop_last=True)

        # train model with new generated dataset
        trainer = Trainer(model, criterion, print_freq=args.print_freq)
        evaluator = Evaluator(model, print_freq=args.print_freq)
        # Start training
        for epoch in range(args.epochs):
            trainer.train(epoch, train_loader, optimizer)

    # Evaluate
    rank_score = evaluator.evaluate(test_loader, tgt_dataset.query,
                                    tgt_dataset.gallery)
    return (rank_score.map, rank_score.market1501[0])
def main(args):
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    cudnn.benchmark = True

    # Create data loaders
    assert args.num_instances > 1, "num_instances should be greater than 1"
    assert args.batch_size % args.num_instances == 0, \
        'num_instances should divide batch_size'
    if args.height is None or args.width is None:
        args.height, args.width = (144, 56) if args.arch == 'inception' else \
                                  (256, 128)

    # get source data
    src_dataset, src_extfeat_loader = \
        get_source_data(args.src_dataset, args.data_dir, args.height,
                        args.width, args.batch_size, args.workers)
    # get target data
    tgt_dataset, num_classes, tgt_extfeat_loader, test_loader = \
        get_data(args.tgt_dataset, args.data_dir, args.height,
                 args.width, args.batch_size, args.workers)

    # Create model
    # Hacking here to let the classifier be the number of source ids
    if args.src_dataset == 'dukemtmc':
        model = models.create(args.arch, num_classes=632, pretrained=False)
    elif args.src_dataset == 'market1501':
        model = models.create(args.arch, num_classes=676, pretrained=False)
    else:
        raise RuntimeError(
            'Please specify the number of classes (ids) of the network.')

    # Load from checkpoint
    if args.resume:
        print(
            'Resuming checkpoints from finetuned model on another dataset...\n'
        )
        checkpoint = load_checkpoint(args.resume)
        model.load_state_dict(checkpoint['state_dict'], strict=False)
    else:
        raise RuntimeWarning('Not using a pre-trained model.')
    model = nn.DataParallel(model).cuda()

    # Distance metric
    # metric = DistanceMetric(algorithm=args.dist_metric)

    # Evaluator
    evaluator = Evaluator(model, print_freq=args.print_freq)
    print(
        "Test with the original model trained on source domain (direct transfer):"
    )
    rank_score_best = evaluator.evaluate(test_loader, tgt_dataset.query,
                                         tgt_dataset.gallery)
    best_map = rank_score_best.map  #market1501[0]-->rank-1

    if args.evaluate:
        return

    # Criterion
    criterion = [
        TripletLoss(args.margin, args.num_instances).cuda(),
        TripletLoss(args.margin, args.num_instances).cuda(),
        AccumulatedLoss(args.margin, args.num_instances).cuda(),
        nn.CrossEntropyLoss().cuda()
    ]

    # Optimizer
    optimizer = torch.optim.SGD(
        model.parameters(),
        lr=args.lr,
        momentum=0.9,
    )

    # training stage transformer on input images
    normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    train_transformer = T.Compose([
        T.Resize((args.height, args.width)),
        T.RandomHorizontalFlip(),
        T.ToTensor(), normalizer,
        T.RandomErasing(probability=0.5, sh=0.2, r1=0.3)
    ])

    # Start training
    for iter_n in range(args.iteration):
        if args.lambda_value == 0:
            source_features = 0  #this value controls the usage of source data
        else:
            # get source datas' feature
            source_features, _ = extract_features(model,
                                                  src_extfeat_loader,
                                                  print_freq=args.print_freq)
            # synchronization feature order with src_dataset.train
            source_features = torch.cat([
                source_features[f].unsqueeze(0)
                for f, _, _ in src_dataset.train
            ], 0)

        # extract training images' features
        print('Iteration {}: Extracting Target Dataset Features...'.format(
            iter_n + 1))
        target_features, _ = extract_features(model,
                                              tgt_extfeat_loader,
                                              print_freq=args.print_freq)
        # synchronization feature order with dataset.train
        target_features = torch.cat([
            target_features[f].unsqueeze(0) for f, _, _ in tgt_dataset.trainval
        ], 0)
        # calculate distance and rerank result
        print('Calculating feature distances...')
        target_features = target_features.numpy()
        rerank_dist = re_ranking(source_features,
                                 target_features,
                                 lambda_value=args.lambda_value)

        if iter_n == 0:
            # DBSCAN cluster
            tri_mat = np.triu(rerank_dist, 1)  # tri_mat.dim=2
            tri_mat = tri_mat[np.nonzero(tri_mat)]  # tri_mat.dim=1
            tri_mat = np.sort(tri_mat, axis=None)
            top_num = np.round(args.rho * tri_mat.size).astype(int)
            eps = tri_mat[:top_num].mean()
            print('eps in cluster: {:.3f}'.format(eps))
            cluster = DBSCAN(eps=eps,
                             min_samples=4,
                             metric='precomputed',
                             n_jobs=8)

            # HDBSCAN cluster
            import hdbscan
            cluster_hdbscan = hdbscan.HDBSCAN(min_cluster_size=10,
                                              min_samples=4,
                                              metric='precomputed')

            # select & cluster images as training set of this epochs
            print('Clustering and labeling...')
            if args.use_hdbscan_clustering:
                print(
                    'Use the better chlustering algorithm HDBSCAN for clustering'
                )
                labels = cluster_hdbscan.fit_predict(rerank_dist)
            else:
                print('Use DBSCAN for clustering')
                labels = cluster.fit_predict(rerank_dist)
            num_ids = len(set(labels)) - 1
            print('Only do once, Iteration {} have {} training ids'.format(
                iter_n + 1, num_ids))

            # generate new dataset
            new_dataset = []
            for (fname, _, _), label in zip(tgt_dataset.trainval, labels):
                if label == -1:
                    continue
                # dont need to change codes in trainer.py _parsing_input function and sampler function after add 0
                new_dataset.append((fname, label, 0))
            print('Only do once, Iteration {} have {} training images'.format(
                iter_n + 1, len(new_dataset)))

            train_loader = DataLoader(
                Preprocessor_return_index(new_dataset,
                                          root=tgt_dataset.images_dir,
                                          transform=train_transformer),
                batch_size=args.batch_size,
                num_workers=4,
                sampler=RandomIdentitySampler(new_dataset, args.num_instances),
                pin_memory=True,
                drop_last=True)

            # init pseudo/fake labels, y_tilde in cvpr19's paper:
            new_label = np.zeros([len(new_dataset), num_ids])
            # init y_tilde, let softmax(y_tilde) is noisy labels
            for index, (imgs, _, pids, _, index) in enumerate(train_loader):
                index = index.numpy()
                onehot = torch.zeros(pids.size(0),
                                     num_ids).scatter_(1, pids.view(-1, 1),
                                                       10.0)
                onehot = onehot.numpy()
                new_label[index, :] = onehot

            # Using clustered label to init the new classifier:
            classifier = nn.Linear(2048, num_ids, bias=False)
            classifier.apply(weights_init_classifier)
            classifier = nn.DataParallel(classifier).cuda()
            optimizer_cla = torch.optim.SGD(classifier.parameters(),
                                            lr=args.lr * 10,
                                            momentum=0.9)

        # train model with new generated dataset
        trainer = Trainer_with_learnable_label(model,
                                               classifier,
                                               criterion,
                                               print_freq=args.print_freq)
        evaluator = Evaluator(model, print_freq=args.print_freq)
        # Start training
        for epoch in range(args.epochs):
            trainer.train(epoch, train_loader, new_label, optimizer,
                          optimizer_cla)

        # Evaluate
        rank_score = evaluator.evaluate(test_loader, tgt_dataset.query,
                                        tgt_dataset.gallery)

        #Save the best ckpt:
        rank1 = rank_score.market1501[0]
        mAP = rank_score.map
        is_best_mAP = mAP > best_map
        best_map = max(mAP, best_map)
        save_checkpoint(
            {
                'state_dict': model.module.state_dict(),
                'epoch': iter_n + 1,
                'best_mAP': best_map,
                # 'num_ids': num_ids,
            },
            is_best_mAP,
            fpath=osp.join(args.logs_dir, 'checkpoint.pth.tar'))

        print(
            '\n * Finished epoch {:3d}  top1: {:5.1%}  mAP: {:5.1%}  best_mAP: {:5.1%}{}\n'
            .format(iter_n + 1, rank1, mAP, best_map,
                    ' *' if is_best_mAP else ''))

    return (rank_score.map, rank_score.market1501[0])
Пример #12
0
def main(args):
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    cudnn.benchmark = True

    # Create data loaders
    assert args.num_instances > 1, "num_instances should be greater than 1"
    assert args.batch_size % args.num_instances == 0, \
        'num_instances should divide batch_size'
    if args.height is None or args.width is None:
        args.height, args.width = (144, 56) if args.arch == 'inception' else \
            (256, 128)

    # get source data
    src_dataset, src_extfeat_loader = \
        get_source_data(args.src_dataset, args.data_dir, args.height,
                        args.width, args.batch_size, args.workers)
    # get target data
    tgt_dataset, num_classes, tgt_extfeat_loader, test_loader = \
        get_data(args.tgt_dataset, args.data_dir, args.height,
                 args.width, args.batch_size, args.workers)

    # Create model
    # Hacking here to let the classifier be the number of source ids
    if args.src_dataset == 'dukemtmc':
        model = models.create(args.arch, num_classes=632, pretrained=False)
    elif args.src_dataset == 'market1501':
        model = models.create(args.arch, num_classes=676, pretrained=False)
    else:
        raise RuntimeError(
            'Please specify the number of classes (ids) of the network.')

    # Load from checkpoint
    if args.resume:
        print(
            'Resuming checkpoints from finetuned model on another dataset...\n'
        )
        checkpoint = load_checkpoint(args.resume)
        model.load_state_dict(checkpoint['state_dict'], strict=False)
    else:
        raise RuntimeWarning('Not using a pre-trained model.')
    model = nn.DataParallel(model).cuda()

    # Criterion
    criterion = [
        TripletLoss(args.margin, args.num_instances, use_semi=False).cuda(),
        TripletLoss(args.margin, args.num_instances, use_semi=False).cuda()
    ]
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    # training stage transformer on input images
    normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    train_transformer = T.Compose([
        T.Resize((args.height, args.width)),
        T.RandomHorizontalFlip(),
        T.ToTensor(), normalizer,
        T.RandomErasing(probability=0.5, sh=0.2, r1=0.3)
    ])

    # # Start training
    for iter_n in range(args.iteration):
        if args.lambda_value == 0:
            source_features = 0
        else:
            # get source datas' feature
            source_features, _ = extract_features(model,
                                                  src_extfeat_loader,
                                                  print_freq=args.print_freq)
            # synchronization feature order with src_dataset.train
            source_features = torch.cat([
                source_features[f].unsqueeze(0)
                for f, _, _ in src_dataset.train
            ], 0)

            # extract training images' features
        print('Iteration {}: Extracting Target Dataset Features...'.format(
            iter_n + 1))
        target_features, _ = extract_features(model,
                                              tgt_extfeat_loader,
                                              print_freq=args.print_freq)
        # synchronization feature order with dataset.train
        target_features = torch.cat([
            target_features[f].unsqueeze(0) for f, _, _ in tgt_dataset.trainval
        ], 0)
        # calculate distance and rerank result
        print('Calculating feature distances...')
        target_features = target_features.numpy()
        rerank_dist = re_ranking(source_features,
                                 target_features,
                                 lambda_value=args.lambda_value)
        if iter_n == 0:
            # DBSCAN cluster
            tri_mat = np.triu(rerank_dist, 1)  # tri_mat.dim=2
            tri_mat = tri_mat[np.nonzero(tri_mat)]  # tri_mat.dim=1
            tri_mat = np.sort(tri_mat, axis=None)
            top_num = np.round(args.rho * tri_mat.size).astype(int)
            eps = tri_mat[:top_num].mean()
            print('eps in cluster: {:.3f}'.format(eps))
            cluster = DBSCAN(eps=eps,
                             min_samples=4,
                             metric='precomputed',
                             n_jobs=8)
        # select & cluster images as training set of this epochs
        print('Clustering and labeling...')
        labels = cluster.fit_predict(rerank_dist)
        num_ids = len(set(labels)) - 1
        print('Iteration {} have {} training ids'.format(iter_n + 1, num_ids))
        # generate new dataset
        new_dataset = []
        # assign label for target ones
        newLab = labelNoise(torch.from_numpy(target_features),
                            torch.from_numpy(labels))
        # unknownFeats = target_features[labels==-1,:]
        counter = 0
        from collections import defaultdict
        realIDs, fakeIDs = defaultdict(list), []
        for (fname, realID, cam), label in zip(tgt_dataset.trainval, newLab):
            # dont need to change codes in trainer.py _parsing_input function and sampler function after add 0
            new_dataset.append((fname, label, cam))
            realIDs[realID].append(counter)
            fakeIDs.append(label)
            counter += 1
        precision, recall, fscore = calScores(realIDs, np.asarray(fakeIDs))
        print('Iteration {} have {} training images'.format(
            iter_n + 1, len(new_dataset)))
        print(
            f'precision:{precision * 100}, recall:{100 * recall}, fscore:{fscore}'
        )
        train_loader = DataLoader(Preprocessor(new_dataset,
                                               root=tgt_dataset.images_dir,
                                               transform=train_transformer),
                                  batch_size=args.batch_size,
                                  num_workers=4,
                                  sampler=RandomIdentitySampler(
                                      new_dataset, args.num_instances),
                                  pin_memory=True,
                                  drop_last=True)

        trainer = Trainer(model, criterion)

        # Start training
        for epoch in range(args.epochs):
            trainer.train(epoch, train_loader, optimizer)  # to at most 80%
        # test only
        evaluator = Evaluator(model, print_freq=args.print_freq)
        # rank_score = evaluator.evaluate(test_loader, tgt_dataset.query, tgt_dataset.gallery)

    # Evaluate
    rank_score = evaluator.evaluate(test_loader, tgt_dataset.query,
                                    tgt_dataset.gallery)
    save_checkpoint(
        {
            'state_dict': model.module.state_dict(),
            'epoch': epoch + 1,
            'best_top1': rank_score.market1501[0],
        },
        True,
        fpath=osp.join(args.logs_dir, 'adapted.pth.tar'))
    return rank_score.map, rank_score.market1501[0]
def main(args):
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    cudnn.benchmark = True

    # Create data loaders
    assert args.num_instances > 1, "num_instances should be greater than 1"
    assert args.batch_size % args.num_instances == 0, \
        'num_instances should divide batch_size'
    if args.height is None or args.width is None:
        args.height, args.width = (144, 56) if args.arch == 'inception' else \
                                  (256, 128)

    # get source data
    src_dataset, src_extfeat_loader = \
        get_source_data(args.src_dataset, args.data_dir, args.height,
                        args.width, args.batch_size, args.workers)
    # get target data
    tgt_dataset, num_classes, tgt_extfeat_loader, test_loader = \
        get_data(args.tgt_dataset, args.data_dir, args.height,
                 args.width, args.batch_size, args.workers)

    # Create model
    # Hacking here to let the classifier be the number of source ids
    if args.src_dataset == 'dukemtmc':
        model = models.create(args.arch, num_classes=632, pretrained=False)
        coModel = models.create(args.arch, num_classes=632, pretrained=False)
    elif args.src_dataset == 'market1501':
        model = models.create(args.arch, num_classes=676, pretrained=False)
        coModel = models.create(args.arch, num_classes=676, pretrained=False)
    else:
        raise RuntimeError(
            'Please specify the number of classes (ids) of the network.')

    # Load from checkpoint
    if args.resume:
        print(
            'Resuming checkpoints from finetuned model on another dataset...\n'
        )
        checkpoint = load_checkpoint(args.resume)
        model.load_state_dict(checkpoint['state_dict'], strict=False)
        coModel.load_state_dict(checkpoint['state_dict'], strict=False)
    else:
        raise RuntimeWarning('Not using a pre-trained model.')
    model = nn.DataParallel(model).cuda()
    coModel = nn.DataParallel(coModel).cuda()

    # evaluator.evaluate(test_loader, tgt_dataset.query, tgt_dataset.gallery)
    # if args.evaluate: return

    # Criterion
    criterion = [
        TripletLoss(args.margin,
                    args.num_instances,
                    isAvg=False,
                    use_semi=False).cuda(),
        TripletLoss(args.margin,
                    args.num_instances,
                    isAvg=False,
                    use_semi=False).cuda(),
    ]

    # Optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
    coOptimizer = torch.optim.Adam(coModel.parameters(), lr=args.lr)

    optims = [optimizer, coOptimizer]

    # training stage transformer on input images
    normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    train_transformer = T.Compose([
        T.Resize((args.height, args.width)),
        T.RandomHorizontalFlip(),
        T.ToTensor(), normalizer,
        T.RandomErasing(probability=0.5, sh=0.2, r1=0.3)
    ])

    # # Start training
    for iter_n in range(args.iteration):
        if args.lambda_value == 0:
            source_features = 0
        else:
            # get source datas' feature
            source_features, _ = extract_features(model,
                                                  src_extfeat_loader,
                                                  print_freq=args.print_freq)
            # synchronization feature order with src_dataset.train
            source_features = torch.cat([
                source_features[f].unsqueeze(0)
                for f, _, _ in src_dataset.train
            ], 0)

        # extract training images' features
        print('Iteration {}: Extracting Target Dataset Features...'.format(
            iter_n + 1))
        target_features, tarNames = extract_features(
            model, tgt_extfeat_loader, print_freq=args.print_freq)
        # synchronization feature order with dataset.train
        target_features = torch.cat([
            target_features[f].unsqueeze(0) for f, _, _ in tgt_dataset.trainval
        ], 0)
        target_real_label = np.asarray(
            [tarNames[f].unsqueeze(0) for f, _, _ in tgt_dataset.trainval])
        numTarID = len(set(target_real_label))
        # calculate distance and rerank result
        print('Calculating feature distances...')
        target_features = target_features.numpy()
        cluster = KMeans(n_clusters=numTarID, n_jobs=8, n_init=1)

        # select & cluster images as training set of this epochs
        print('Clustering and labeling...')
        clusterRes = cluster.fit(target_features)
        labels, centers = clusterRes.labels_, clusterRes.cluster_centers_
        labels = splitLowconfi(target_features, labels, centers)
        # num_ids = len(set(labels))
        # print('Iteration {} have {} training ids'.format(iter_n+1, num_ids))
        # generate new dataset
        new_dataset, unknown_dataset = [], []
        # assign label for target ones
        unknownLab = labelNoise(torch.from_numpy(target_features),
                                torch.from_numpy(labels))
        # unknownFeats = target_features[labels==-1,:]
        unCounter = 0
        for (fname, _, cam), label in zip(tgt_dataset.trainval, labels):
            if label == -1:
                unknown_dataset.append(
                    (fname, int(unknownLab[unCounter]), cam))  # unknown data
                unCounter += 1
                continue
            # dont need to change codes in trainer.py _parsing_input function and sampler function after add 0
            new_dataset.append((fname, label, cam))
        print('Iteration {} have {} training images'.format(
            iter_n + 1, len(new_dataset)))

        train_loader = DataLoader(Preprocessor(new_dataset,
                                               root=tgt_dataset.images_dir,
                                               transform=train_transformer),
                                  batch_size=args.batch_size,
                                  num_workers=4,
                                  sampler=RandomIdentitySampler(
                                      new_dataset, args.num_instances),
                                  pin_memory=True,
                                  drop_last=True)
        # hard samples
        unLoader = DataLoader(Preprocessor(unknown_dataset,
                                           root=tgt_dataset.images_dir,
                                           transform=train_transformer),
                              batch_size=args.batch_size,
                              num_workers=4,
                              sampler=RandomIdentitySampler(
                                  unknown_dataset, args.num_instances),
                              pin_memory=True,
                              drop_last=True)

        # train model with new generated dataset
        trainer = CoTrainerAsy(model, coModel, train_loader, unLoader,
                               criterion, optims)
        # trainer = CoTeaching(
        #    model, coModel, train_loader, unLoader, criterion, optims
        # )
        # trainer = CoTrainerAsySep(
        #     model, coModel, train_loader, unLoader, criterion, optims
        # )

        evaluator = Evaluator(model, print_freq=args.print_freq)
        #evaluatorB = Evaluator(coModel, print_freq=args.print_freq)
        # Start training
        for epoch in range(args.epochs):
            trainer.train(epoch,
                          remRate=0.2 + (0.6 / args.iteration) *
                          (1 + iter_n))  # to at most 80%
            # trainer.train(epoch, remRate=0.7+(0.3/args.iteration)*(1+iter_n))
        # test only
        rank_score = evaluator.evaluate(test_loader, tgt_dataset.query,
                                        tgt_dataset.gallery)
        #print('co-model:\n')
        #rank_score = evaluatorB.evaluate(test_loader, tgt_dataset.query, tgt_dataset.gallery)

    # Evaluate
    rank_score = evaluator.evaluate(test_loader, tgt_dataset.query,
                                    tgt_dataset.gallery)
    save_checkpoint(
        {
            'state_dict': model.module.state_dict(),
            'epoch': epoch + 1,
            'best_top1': rank_score.market1501[0],
        },
        True,
        fpath=osp.join(args.logs_dir, 'adapted.pth.tar'))
    return (rank_score.map, rank_score.market1501[0])
Пример #14
0
def get_data(data_dir, source, target, height, width, batch_size, re=0, workers=8):

    dataset = DA(data_dir, source, target)
    dataset_2 = DA(data_dir, target, source)

    normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])

    num_classes = dataset.num_train_ids

    train_transformer = T.Compose([
        T.Resize((height, width), interpolation=3),
             T.RandomHorizontalFlip(p=0.5),
             T.Pad(10),
             T.RandomCrop((height, width)),
             T.ToTensor(),
        normalizer,
       # T.RandomErasing(EPSILON=re),
        T.RandomErasing(probability=0.4, mean=[0.485, 0.456, 0.406])
    ])

    train_transformer_2 = T.Compose([
        T.Resize((height, width), interpolation=3),
             T.RandomHorizontalFlip(p=0.5),
             T.Pad(10),
             T.RandomCrop((height, width)),
             T.ToTensor(),
        normalizer,
       # T.RandomErasing(EPSILON=re),
        T.RandomErasing(probability=0.4, mean=[0.485, 0.456, 0.406])
    ])

    test_transformer = T.Compose([
        T.Resize((height, width), interpolation=3),
        T.ToTensor(),
        normalizer,
    ])

    '''
    num_instances=4

    rmgs_flag = num_instances > 0
    if rmgs_flag:
        sampler = RandomIdentitySampler(dataset.target_train, num_instances)
    else:
        sampler = None
    '''
    source_train_loader = DataLoader(
        Preprocessor(dataset.source_train, root=osp.join(dataset.source_images_dir, dataset.source_train_path),
                     transform=train_transformer),
        batch_size=batch_size, num_workers=workers,
        shuffle=True, pin_memory=True, drop_last=True)

    num_instances=0

    rmgs_flag = num_instances > 0
    if rmgs_flag:
        sampler = RandomIdentitySampler(dataset.target_train, num_instances)
    else:
        sampler = None



    target_train_loader = DataLoader(
        UnsupervisedCamStylePreprocessor(dataset.target_train,
                                         root=osp.join(dataset.target_images_dir, dataset.target_train_path),
                                         camstyle_root=osp.join(dataset.target_images_dir,
                                                                dataset.target_train_camstyle_path),
                                         num_cam=dataset.target_num_cam, transform=train_transformer),
        batch_size=batch_size, num_workers=workers,
        shuffle=True, pin_memory=True, drop_last=True)

    query_loader = DataLoader(
        Preprocessor(dataset.query,
                     root=osp.join(dataset.target_images_dir, dataset.query_path), transform=test_transformer),
        batch_size=batch_size, num_workers=workers,
        shuffle=False, pin_memory=True)

    query_loader_2 = DataLoader(
        Preprocessor(dataset_2.query,
                     root=osp.join(dataset_2.target_images_dir, dataset_2.query_path), transform=test_transformer),
        batch_size=batch_size, num_workers=workers,
        shuffle=False, pin_memory=True)

    gallery_loader = DataLoader(
        Preprocessor(dataset.gallery,
                     root=osp.join(dataset.target_images_dir, dataset.gallery_path), transform=test_transformer),
        batch_size=batch_size, num_workers=workers,
        shuffle=False, pin_memory=True)

    gallery_loader_2 = DataLoader(
        Preprocessor(dataset_2.gallery,
                     root=osp.join(dataset_2.target_images_dir, dataset_2.gallery_path), transform=test_transformer),
        batch_size=batch_size, num_workers=workers,
        shuffle=False, pin_memory=True)

    return dataset,dataset_2, num_classes, source_train_loader, target_train_loader, query_loader, gallery_loader, query_loader_2, gallery_loader_2
Пример #15
0
def main(args):
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    cudnn.benchmark = True

    # Create data loaders
    assert args.num_instances > 1, "num_instances should be greater than 1"
    assert args.batch_size % args.num_instances == 0, \
        'num_instances should divide batch_size'
    if args.height is None or args.width is None:
        args.height, args.width = (144, 56) if args.arch == 'inception' else \
                                  (256, 128)

    # get source data
    src_dataset, src_extfeat_loader = \
        get_source_data(args.src_dataset, args.data_dir, args.height,
                        args.width, args.batch_size, args.workers)
    # get target data
    tgt_dataset, num_classes, tgt_extfeat_loader, test_loader = \
        get_data(args.tgt_dataset, args.data_dir, args.height,
                 args.width, args.batch_size, args.workers)

    # Create model
    # Hacking here to let the classifier be the number of source ids
    if args.src_dataset == 'dukemtmc':
        model = models.create(args.arch, num_classes=632, pretrained=False)
    elif args.src_dataset == 'market1501':
        model = models.create(args.arch, num_classes=676, pretrained=False)
    else:
        raise RuntimeError(
            'Please specify the number of classes (ids) of the network.')

    # Load from checkpoint
    if args.resume:
        print(
            'Resuming checkpoints from finetuned model on another dataset...\n'
        )
        checkpoint = load_checkpoint(args.resume)
        model.load_state_dict(checkpoint['state_dict'], strict=False)
    else:
        raise RuntimeWarning('Not using a pre-trained model.')
    model = nn.DataParallel(model).cuda()

    # evaluator.evaluate(test_loader, tgt_dataset.query, tgt_dataset.gallery)
    # if args.evaluate: return

    # Criterion
    criterion = [
        TripletLoss(args.margin, args.num_instances, isAvg=True,
                    use_semi=True).cuda(),
        TripletLoss(args.margin, args.num_instances, isAvg=True,
                    use_semi=True).cuda(), None, None
    ]

    # Optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    # training stage transformer on input images
    normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    train_transformer = T.Compose([
        T.Resize((args.height, args.width)),
        T.RandomHorizontalFlip(),
        T.ToTensor(), normalizer,
        T.RandomErasing(probability=0.5, sh=0.2, r1=0.3)
    ])

    evaluator = Evaluator(model, print_freq=args.print_freq)
    evaluator.evaluate(test_loader, tgt_dataset.query, tgt_dataset.gallery)

    # # Start training
    for iter_n in range(args.iteration):
        if args.lambda_value == 0:
            source_features = 0
        else:
            # get source datas' feature
            source_features, _ = extract_features(model,
                                                  src_extfeat_loader,
                                                  print_freq=args.print_freq)
            # synchronization feature order with src_dataset.train
            source_features = torch.cat([
                source_features[f].unsqueeze(0)
                for f, _, _, _ in src_dataset.train
            ], 0)

        # extract training images' features
        print('Iteration {}: Extracting Target Dataset Features...'.format(
            iter_n + 1))
        target_features, tarNames = extract_features(
            model, tgt_extfeat_loader, print_freq=args.print_freq)
        # synchronization feature order with dataset.train
        target_features = torch.cat([
            target_features[f].unsqueeze(0)
            for f, _, _, _ in tgt_dataset.trainval
        ], 0)
        # target_real_label = np.asarray([tarNames[f].unsqueeze(0) for f, _, _, _ in tgt_dataset.trainval])

        # calculate distance and rerank result
        # method 1
        target_features = target_features.numpy()
        rerank_dist = re_ranking(source_features,
                                 target_features,
                                 lambda_value=args.lambda_value)

        # method 2
        # distmat_qq = calDis(source_features, source_features)
        # distmat_qg = calDis(source_features, target_features)
        # distmat_gg = calDis(target_features, target_features)
        # rerank_dist = re_ranking2(distmat_qg.numpy(), distmat_qq.numpy(), distmat_gg.numpy())

        cluster = HDBSCAN(metric='precomputed', min_samples=10)
        # select & cluster images as training set of this epochs
        clusterRes = cluster.fit(rerank_dist)
        labels, label_num = clusterRes.labels_, clusterRes.labels_.max() + 1
        centers = np.zeros((label_num, target_features.shape[1]))
        nums = [0] * target_features.shape[1]
        print('clusters num =', label_num)

        # generate new dataset
        new_dataset = []
        index = -1
        for (fname, _, cam, timestamp), label in zip(tgt_dataset.trainval,
                                                     labels):
            index += 1
            if label == -1: continue
            # dont need to change codes in trainer.py _parsing_input function and sampler function after add 0
            new_dataset.append((fname, label, cam, timestamp))
            centers[label] += target_features[index]
            nums[label] += 1
        print('Iteration {} have {} training images'.format(
            iter_n + 1, len(new_dataset)))

        train_loader = DataLoader(Preprocessor(new_dataset,
                                               root=tgt_dataset.images_dir,
                                               transform=train_transformer),
                                  batch_size=args.batch_size,
                                  num_workers=4,
                                  sampler=RandomIdentitySampler(
                                      new_dataset, args.num_instances),
                                  pin_memory=True,
                                  drop_last=True)

        for i in range(label_num):
            centers[i] /= nums[i]
        criterion[3] = ClassificationLoss(normalize(centers, axis=1)).cuda()

        classOptimizer = torch.optim.Adam(
            [{
                'params': model.parameters()
            }, {
                'params': criterion[3].classifier.parameters(),
                'lr': 1e-3
            }],
            lr=args.lr)

        class_trainer = ClassificationTrainer(model, train_loader, criterion,
                                              classOptimizer)

        for epoch in range(args.epochs):
            class_trainer.train(epoch)

        rank_score = evaluator.evaluate(test_loader, tgt_dataset.query,
                                        tgt_dataset.gallery)

    # Evaluate
    rank_score = evaluator.evaluate(test_loader, tgt_dataset.query,
                                    tgt_dataset.gallery)
    save_checkpoint(
        {
            'state_dict': model.module.state_dict(),
            'epoch': epoch + 1,
            'best_top1': rank_score.market1501[0],
        },
        True,
        fpath=osp.join(args.logs_dir, 'adapted.pth.tar'))
    return (rank_score.map, rank_score.market1501[0])
Пример #16
0
def get_data(name, data_dir, height, width, batch_size, workers,
             combine_trainval, crop, tracking_icams, fps, re=0, num_instances=0, camstyle=0, zju=0, colorjitter=0):
    # if name == 'market1501':
    #     root = osp.join(data_dir, 'Market-1501-v15.09.15')
    # elif name == 'duke_reid':
    #     root = osp.join(data_dir, 'DukeMTMC-reID')
    # elif name == 'duke_tracking':
    #     root = osp.join(data_dir, 'DukeMTMC')
    # else:
    #     root = osp.join(data_dir, name)
    if name == 'duke_tracking':
        if tracking_icams != 0:
            tracking_icams = [tracking_icams]
        else:
            tracking_icams = list(range(1, 9))
        dataset = datasets.create(name, data_dir, data_type='tracking_gt', iCams=tracking_icams, fps=fps,
                                  trainval=combine_trainval)
    elif name == 'aic_tracking':
        dataset = datasets.create(name, data_dir, data_type='tracking_gt', fps=fps, trainval=combine_trainval)
    else:
        dataset = datasets.create(name, data_dir)
    normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    num_classes = dataset.num_train_ids

    train_transformer = T.Compose([
        T.ColorJitter(brightness=0.1 * colorjitter, contrast=0.1 * colorjitter, saturation=0.1 * colorjitter, hue=0),
        T.Resize((height, width)),
        T.RandomHorizontalFlip(),
        T.Pad(10 * crop),
        T.RandomCrop((height, width)),
        T.ToTensor(),
        normalizer,
        T.RandomErasing(probability=re),
    ])
    test_transformer = T.Compose([
        T.Resize((height, width)),
        # T.RectScale(height, width, interpolation=3),
        T.ToTensor(),
        normalizer,
    ])

    if zju:
        train_loader = DataLoader(
            Preprocessor(dataset.train, root=dataset.train_path, transform=train_transformer),
            batch_size=batch_size, num_workers=workers,
            sampler=ZJU_RandomIdentitySampler(dataset.train, batch_size, num_instances) if num_instances else None,
            shuffle=False if num_instances else True, pin_memory=True, drop_last=False if num_instances else True)
    else:
        train_loader = DataLoader(
            Preprocessor(dataset.train, root=dataset.train_path, transform=train_transformer),
            batch_size=batch_size, num_workers=workers,
            sampler=RandomIdentitySampler(dataset.train, num_instances) if num_instances else None,
            shuffle=False if num_instances else True, pin_memory=True, drop_last=True)
    query_loader = DataLoader(
        Preprocessor(dataset.query, root=dataset.query_path, transform=test_transformer),
        batch_size=batch_size, num_workers=workers,
        shuffle=False, pin_memory=True)
    gallery_loader = DataLoader(
        Preprocessor(dataset.gallery, root=dataset.gallery_path, transform=test_transformer),
        batch_size=batch_size, num_workers=workers,
        shuffle=False, pin_memory=True)
    if camstyle <= 0:
        camstyle_loader = None
    else:
        camstyle_loader = DataLoader(
            Preprocessor(dataset.camstyle, root=dataset.camstyle_path, transform=train_transformer),
            batch_size=camstyle, num_workers=workers,
            shuffle=True, pin_memory=True, drop_last=True)
    return dataset, num_classes, train_loader, query_loader, gallery_loader, camstyle_loader
Пример #17
0
def main(args):
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    cudnn.benchmark = True

    # Create data loaders
    assert args.num_instances > 1, "num_instances should be greater than 1"
    assert args.batch_size % args.num_instances == 0, \
        'num_instances should divide batch_size'
    if args.height is None or args.width is None:
        args.height, args.width = (144, 56) if args.arch == 'inception' else \
            (256, 128)

    # get source data
    src_dataset, src_extfeat_loader = \
        get_source_data(args.src_dataset, args.data_dir, args.height,
                        args.width, args.batch_size, args.workers)
    # get target data
    tgt_dataset, num_classes, tgt_extfeat_loader, test_loader = \
        get_data(args.tgt_dataset, args.data_dir, args.height,
                 args.width, args.batch_size, args.workers)

    # Create model
    # Hacking here to let the classifier be the number of source ids
    if args.src_dataset == 'dukemtmc':
        model = models.create(args.arch, num_classes=632, pretrained=False)
    elif args.src_dataset == 'market1501':
        model = models.create(args.arch, num_classes=676, pretrained=False)
    elif args.src_dataset == 'msmt17':
        model = models.create(args.arch, num_classes=1041, pretrained=False)
    elif args.src_dataset == 'cuhk03':
        model = models.create(args.arch, num_classes=1230, pretrained=False)
    else:
        raise RuntimeError(
            'Please specify the number of classes (ids) of the network.')

    # Load from checkpoint
    if args.resume:
        print(
            'Resuming checkpoints from finetuned model on another dataset...\n'
        )
        checkpoint = load_checkpoint(args.resume)
        model.load_state_dict(checkpoint['state_dict'], strict=False)
    else:
        raise RuntimeWarning('Not using a pre-trained model.')
    model = nn.DataParallel(model).cuda()

    evaluator = Evaluator(model, print_freq=args.print_freq)
    evaluator.evaluate(test_loader, tgt_dataset.query, tgt_dataset.gallery)
    # if args.evaluate: return

    # Criterion
    criterion = [
        HoughTripletLoss(args.margin,
                         args.num_instances,
                         isAvg=False,
                         use_semi=False).cuda(),
        HoughTripletLoss(args.margin,
                         args.num_instances,
                         isAvg=False,
                         use_semi=False).cuda()
    ]

    # Optimizer
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)

    # training stage transformer on input images
    normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])
    train_transformer = T.Compose([
        T.Resize((args.height, args.width)),
        T.RandomHorizontalFlip(),
        T.ToTensor(), normalizer,
        T.RandomErasing(probability=0.5, sh=0.2, r1=0.3)
    ])

    # # Start training
    for iter_n in range(args.iteration):
        if args.lambda_value == 0:
            source_features = 0
        else:
            # get source datas' feature
            source_features, _ = extract_features(model,
                                                  src_extfeat_loader,
                                                  print_freq=args.print_freq)
            # synchronization feature order with src_dataset.train
            source_features = torch.cat([
                source_features[f].unsqueeze(0)
                for f, _, _, _ in src_dataset.train
            ], 0)

            # extract training images' features
        print('Iteration {}: Extracting Target Dataset Features...'.format(
            iter_n + 1))
        target_features, _ = extract_features(model,
                                              tgt_extfeat_loader,
                                              print_freq=args.print_freq)
        # synchronization feature order with dataset.train
        target_features = torch.cat([
            target_features[f].unsqueeze(0)
            for f, _, _, _ in tgt_dataset.trainval
        ], 0)
        # calculate distance and rerank result
        print('Calculating feature distances...')
        target_features = target_features.numpy()
        rerank_dist = re_ranking(source_features,
                                 target_features,
                                 lambda_value=args.lambda_value)
        if iter_n == 0:
            # DBSCAN cluster
            tri_mat = np.triu(rerank_dist, 1)  # tri_mat.dim=2
            tri_mat = tri_mat[np.nonzero(tri_mat)]  # tri_mat.dim=1
            tri_mat = np.sort(tri_mat, axis=None)
            top_num = np.round(args.rho * tri_mat.size).astype(int)
            eps = tri_mat[:top_num].mean()
            print('eps in cluster: {:.3f}'.format(eps))
            cluster = DBSCAN(eps=eps,
                             min_samples=4,
                             metric='precomputed',
                             n_jobs=8)

        # select & cluster images as training set of this epochs
        print('Clustering and labeling...')
        labels = cluster.fit_predict(rerank_dist)
        num_ids = len(set(labels)) - 1
        print('Iteration {} have {} training ids'.format(iter_n + 1, num_ids))
        # generate new dataset
        new_dataset, unknown_dataset = [], []
        # assign label for target ones
        unknownLab = labelNoise(torch.from_numpy(target_features),
                                torch.from_numpy(labels))
        # unknownFeats = target_features[labels==-1,:]
        unCounter, index = 0, 0
        from collections import defaultdict
        realIDs, fakeIDs = defaultdict(list), []
        record_labels = {}
        hough = Hough(8, 40, 230, 2935, 25, args.short_cut)
        for (fname, realPID, cam,
             timestamp), label in zip(tgt_dataset.trainval, labels):
            if label == -1:
                unknown_dataset.append((fname, int(unknownLab[unCounter]), cam,
                                        timestamp))  # unknown data
                fakeIDs.append(int(unknownLab[unCounter]))
                realIDs[realPID].append(index)
                unCounter += 1
                index += 1
                continue
            # dont need to change codes in trainer.py _parsing_input function and sampler function after add 0
            if label not in record_labels:
                record_labels[label] = []
            for index2 in record_labels[label]:
                hough.update(cam, tgt_dataset.trainval[index2][2], timestamp,
                             tgt_dataset.trainval[index2][3])
            record_labels[label].append(index)
            new_dataset.append((fname, label, cam, timestamp))
            fakeIDs.append(label)
            realIDs[realPID].append(index)
            index += 1
        print('Iteration {} have {} training images'.format(
            iter_n + 1, len(new_dataset)))
        precision, recall, fscore = calScores(
            realIDs, np.asarray(fakeIDs))  # fakeIDs does not contain -1
        print('precision:{}, recall:{}, fscore: {}'.format(
            100 * precision, 100 * recall, fscore))

        T_pseu, TP_pseu, T_gt, TP_gt, index = (0, 0, 0, 0, -1)
        for (fname, realPID, cam,
             timestamp), label in zip(tgt_dataset.trainval, labels):
            index += 1

            # calc by gt label
            T_gt = T_gt + len(realIDs[realPID]) - 1
            for index2 in realIDs[realPID]:
                if index2 == index: continue
                if hough.on_peak(cam, tgt_dataset.trainval[index2][2],
                                 timestamp, tgt_dataset.trainval[index2][3]):
                    TP_gt += 1

            # calc by pseudo label
            if label == -1: continue
            T_pseu = T_pseu + len(record_labels[label]) - 1
            for index2 in record_labels[label]:
                if index2 == index: continue
                if hough.on_peak(cam, tgt_dataset.trainval[index2][2],
                                 timestamp, tgt_dataset.trainval[index2][3]):
                    TP_pseu += 1

        print('gt label: T = %d, TP = %d, recall = %f' %
              (T_gt, TP_gt, TP_pseu / T_gt))
        print('pseudo label: T = %d, TP = %d, recall = %f' %
              (T_pseu, TP_pseu, TP_pseu / T_pseu))

        train_loader = DataLoader(Preprocessor(new_dataset,
                                               root=tgt_dataset.images_dir,
                                               transform=train_transformer),
                                  batch_size=args.batch_size,
                                  num_workers=4,
                                  sampler=RandomIdentitySampler(
                                      new_dataset, args.num_instances),
                                  pin_memory=True,
                                  drop_last=True)
        # hard samples
        # noiseImgs = [name[1] for name in unknown_dataset]
        # saveAll(noiseImgs, tgt_dataset.images_dir, 'noiseImg')
        # import ipdb; ipdb.set_trace()
        unLoader = DataLoader(Preprocessor(unknown_dataset,
                                           root=tgt_dataset.images_dir,
                                           transform=train_transformer),
                              batch_size=args.batch_size,
                              num_workers=4,
                              sampler=RandomIdentitySampler(
                                  unknown_dataset, args.num_instances),
                              pin_memory=True,
                              drop_last=True)
        # train model with new generated dataset
        trainer1 = HoughTrainer(model, hough, train_loader, criterion,
                                optimizer)
        trainer2 = HoughTrainer(model, hough, unLoader, criterion, optimizer)

        # Start training
        for epoch in range(args.epochs):
            trainer1.train(epoch)
            trainer2.train(epoch)

        # test only
        rank_score = evaluator.evaluate(test_loader, tgt_dataset.query,
                                        tgt_dataset.gallery)
        # print('co-model:\n')
        # rank_score = evaluatorB.evaluate(test_loader, tgt_dataset.query, tgt_dataset.gallery)

    # Evaluate
    rank_score = evaluator.evaluate(test_loader, tgt_dataset.query,
                                    tgt_dataset.gallery)
    save_checkpoint(
        {
            'state_dict': model.module.state_dict(),
            'epoch': epoch + 1,
            'best_top1': rank_score.market1501[0],
        },
        True,
        fpath=osp.join(args.logs_dir, 'asyCo.pth'))
    return rank_score.map, rank_score.market1501[0]
Пример #18
0
def update_train_loader(dataset,
                        train_samples,
                        updated_label,
                        height,
                        width,
                        batch_size,
                        re,
                        workers,
                        all_img_cams,
                        sample_position=7):
    normalizer = T.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])

    train_transformer = T.Compose([
        T.Resize((height, width), interpolation=3),
        T.RandomHorizontalFlip(p=0.5),
        T.Pad(10),
        T.RandomCrop((height, width)),
        T.ToTensor(), normalizer,
        T.RandomErasing(EPSILON=re)
    ])

    # obtain global accumulated label from pseudo label and cameras
    pure_label = updated_label[updated_label >= 0]
    pure_cams = all_img_cams[updated_label >= 0]
    accumulate_labels = np.zeros(pure_label.shape, pure_label.dtype)
    prev_id_count = 0
    id_count_each_cam = []
    for this_cam in np.unique(pure_cams):
        percam_labels = pure_label[pure_cams == this_cam]
        unique_id = np.unique(percam_labels)
        id_count_each_cam.append(len(unique_id))
        id_dict = {ID: i for i, ID in enumerate(unique_id.tolist())}
        for i in range(len(percam_labels)):
            percam_labels[i] = id_dict[percam_labels[i]]
        accumulate_labels[pure_cams ==
                          this_cam] = percam_labels + prev_id_count
        prev_id_count += len(unique_id)
    print('  sum(id_count_each_cam)= {}'.format(sum(id_count_each_cam)))
    new_accum_labels = -1 * np.ones(updated_label.shape, updated_label.dtype)
    new_accum_labels[updated_label >= 0] = accumulate_labels

    # update sample list
    new_train_samples = []
    for sample in train_samples:
        lbl = updated_label[sample[3]]
        if lbl != -1:
            assert (new_accum_labels[sample[3]] >= 0)
            new_sample = sample + (lbl, new_accum_labels[sample[3]])
            new_train_samples.append(new_sample)

    target_train_loader = DataLoader(UnsupervisedTargetPreprocessor(
        new_train_samples,
        root=osp.join(dataset.target_images_dir, dataset.target_train_path),
        num_cam=dataset.target_num_cam,
        transform=train_transformer,
        has_pseudo_label=True),
                                     batch_size=batch_size,
                                     num_workers=workers,
                                     pin_memory=True,
                                     drop_last=True,
                                     sampler=ClassUniformlySampler(
                                         new_train_samples,
                                         class_position=sample_position,
                                         k=4))

    return target_train_loader, len(new_train_samples)
Пример #19
0
def main(args):
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    cudnn.benchmark = True

    # Redirect print to both console and log file
    sys.stdout = Logger(osp.join(args.logs_dir, 'log.txt'))
    print(args)
    shutil.copy(sys.argv[0], osp.join(args.logs_dir,
                                      osp.basename(sys.argv[0])))

    # Create data loaders
    if args.height is None or args.width is None:
        args.height, args.width = (256, 128)
    dataset, num_classes, train_loader, val_loader, test_loader = \
        get_data(args.dataset, args.split, args.data_dir, args.height,
                 args.width, args.batch_size * 8, args.workers,
                 )

    # Create model
    model = models.create("ft_net_inter",
                          num_classes=num_classes,
                          stride=args.stride)

    # Load from checkpoint
    start_epoch = 0
    best_top1 = 0
    top1 = 0
    is_best = False
    if args.checkpoint is not None:
        if args.evaluate:
            checkpoint = load_checkpoint(args.checkpoint)
            param_dict = model.state_dict()
            for k, v in checkpoint['state_dict'].items():
                if 'model' in k:
                    param_dict[k] = v
            model.load_state_dict(param_dict)
        else:
            model.model.load_param(args.checkpoint)
    model = model.cuda()

    # Distance metric
    metric = None

    # Evaluator
    evaluator = Evaluator(model, use_cpu=args.use_cpu)
    if args.evaluate:
        print("Test:")
        evaluator.evaluate(test_loader, dataset.query, dataset.gallery, metric)
        return

    train_transformer = [
        T.Resize((args.height, args.width), interpolation=3),
        T.RandomHorizontalFlip(),
        T.Pad(10),
        T.RandomCrop((args.height, args.width)),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        T.RandomErasing(probability=0.5),
    ]
    train_transformer = T.Compose(train_transformer)
    for cluster_epoch in range(args.cluster_epochs):
        # -------------------------Stage 1 intra camera training--------------------------
        # Cluster and generate new dataset and model
        cluster_result = get_intra_cam_cluster_result(model, train_loader,
                                                      args.class_number_stage1,
                                                      args.linkage)
        cluster_datasets = [
            datasets.create("cluster", osp.join(args.data_dir, args.dataset),
                            cluster_result[cam_id], cam_id)
            for cam_id in cluster_result.keys()
        ]

        cluster_dataloaders = [
            DataLoader(Preprocessor(dataset.train_set,
                                    root=dataset.images_dir,
                                    transform=train_transformer),
                       batch_size=args.batch_size,
                       num_workers=args.workers,
                       shuffle=True,
                       pin_memory=False,
                       drop_last=True) for dataset in cluster_datasets
        ]
        param_dict = model.model.state_dict()
        model = models.create("ft_net_intra",
                              num_classes=[
                                  args.class_number_stage1
                                  for cam_id in cluster_result.keys()
                              ],
                              stride=args.stride)

        model_param_dict = model.model.state_dict()
        for k, v in model_param_dict.items():
            if k in param_dict.keys():
                model_param_dict[k] = param_dict[k]
        model.model.load_state_dict(model_param_dict)

        model = model.cuda()
        criterion = nn.CrossEntropyLoss().cuda()

        # Optimizer
        param_groups = make_params(model, args.lr, args.weight_decay)
        optimizer = torch.optim.SGD(param_groups, momentum=0.9)
        # Trainer
        trainer = IntraCameraTrainer(model,
                                     criterion,
                                     warm_up_epoch=args.warm_up)
        print("start training")
        # Start training
        for epoch in range(0, args.epochs_stage1):
            trainer.train(
                cluster_epoch,
                epoch,
                cluster_dataloaders,
                optimizer,
                print_freq=args.print_freq,
            )
        # -------------------------------------------Stage 2 inter camera training-----------------------------------
        mix_rate = get_mix_rate(args.mix_rate,
                                cluster_epoch,
                                args.cluster_epochs,
                                power=args.decay_factor)

        cluster_result = get_inter_cam_cluster_result(model,
                                                      train_loader,
                                                      args.class_number_stage2,
                                                      args.linkage,
                                                      mix_rate,
                                                      use_cpu=args.use_cpu)

        cluster_dataset = datasets.create(
            "cluster", osp.join(args.data_dir, args.dataset), cluster_result,
            0)

        cluster_dataloaders = DataLoader(
            Preprocessor(cluster_dataset.train_set,
                         root=cluster_dataset.images_dir,
                         transform=train_transformer),
            batch_size=args.batch_size_stage2,
            num_workers=args.workers,
            sampler=RandomIdentitySampler(cluster_dataset.train_set,
                                          args.batch_size_stage2,
                                          args.instances),
            pin_memory=False,
            drop_last=True)

        param_dict = model.model.state_dict()
        model = models.create("ft_net_inter",
                              num_classes=args.class_number_stage2,
                              stride=args.stride)
        model.model.load_state_dict(param_dict)

        model = model.cuda()
        # Criterion
        criterion_entropy = nn.CrossEntropyLoss().cuda()
        criterion_triple = TripletLoss(margin=args.margin).cuda()

        # Optimizer
        param_groups = make_params(model,
                                   args.lr * args.batch_size_stage2 / 32,
                                   args.weight_decay)

        optimizer = torch.optim.SGD(param_groups, momentum=0.9)
        # Trainer
        trainer = InterCameraTrainer(
            model,
            criterion_entropy,
            criterion_triple,
            warm_up_epoch=args.warm_up,
        )

        print("start training")
        # Start training
        for epoch in range(0, args.epochs_stage2):
            trainer.train(cluster_epoch,
                          epoch,
                          cluster_dataloaders,
                          optimizer,
                          print_freq=args.print_freq)
        if (cluster_epoch + 1) % 5 == 0:

            evaluator = Evaluator(model, use_cpu=args.use_cpu)
            top1, mAP = evaluator.evaluate(test_loader,
                                           dataset.query,
                                           dataset.gallery,
                                           metric,
                                           return_mAP=True)

            is_best = top1 > best_top1
            best_top1 = max(top1, best_top1)

            save_checkpoint(
                {
                    'state_dict': model.state_dict(),
                    'epoch': cluster_epoch + 1,
                    'best_top1': best_top1,
                    'cluster_epoch': cluster_epoch + 1,
                },
                is_best,
                fpath=osp.join(args.logs_dir, 'checkpoint.pth.tar'))
        if cluster_epoch == (args.cluster_epochs - 1):
            save_checkpoint(
                {
                    'state_dict': model.state_dict(),
                    'epoch': cluster_epoch + 1,
                    'best_top1': best_top1,
                    'cluster_epoch': cluster_epoch + 1,
                },
                False,
                fpath=osp.join(args.logs_dir, 'latest.pth.tar'))

        print('\n * cluster_epoch: {:3d} top1: {:5.1%}  best: {:5.1%}{}\n'.
              format(cluster_epoch, top1, best_top1, ' *' if is_best else ''))

    # Final test
    print('Test with best model:')
    checkpoint = load_checkpoint(osp.join(args.logs_dir, 'model_best.pth.tar'))
    model.load_state_dict(checkpoint['state_dict'])
    best_rank1, mAP = evaluator.evaluate(test_loader,
                                         dataset.query,
                                         dataset.gallery,
                                         metric,
                                         return_mAP=True)
Пример #20
0
def main(args):
    np.random.seed(args.seed) # With the seed reset (every time), the same set of numbers will appear every time.
    torch.manual_seed(args.seed) # Sets the seed for generating random numbers.
    cudnn.benchmark = True # This flag allows you to enable the inbuilt cudnn auto-tuner to find the best algorithm to use for your hardware. It enables benchmark mode in cudnn.

    # Redirect print to both console and log file
    sys.stdout = Logger(osp.join(args.logs_dir, 'log.txt'))
    print(args)
    shutil.copy(sys.argv[0], osp.join(args.logs_dir,
                                      osp.basename(sys.argv[0])))

    # Create data loaders
    if args.height is None or args.width is None:
        args.height, args.width = (256, 128)
    dataset, num_classes, train_loader, val_loader, test_loader = \
        get_data(args.dataset, args.split, args.data_dir, args.height,
                 args.width, args.batch_size * 8, args.workers, #https://deeplizard.com/learn/video/kWVgvsejXsE#:~:text=The%20num_workers%20attribute%20tells%20the,sequentially%20inside%20the%20main%20process.
                 )

    # Create model
    model = models.create("ft_net_inter",
                          num_classes=num_classes, stride=args.stride)

    # Load from checkpoint
    start_epoch = 0
    best_top1 = 0
    top1 = 0
    is_best = False
    if args.checkpoint is not None:
        if args.evaluate:
            checkpoint = load_checkpoint(args.checkpoint)
            param_dict = model.state_dict() # A state_dict is simply a Python dictionary object that maps each layer to its parameter tensor.
            for k, v in checkpoint['state_dict'].items():
                if 'model' in k:
                    param_dict[k] = v
            model.load_state_dict(param_dict)
        else:
            model.model.load_param(args.checkpoint)
    model = model.cuda()

    # Distance metric
    metric = None

    # Evaluator
    evaluator = Evaluator(model, use_cpu=args.use_cpu)
    if args.evaluate:
        print("Test:")
        evaluator.evaluate(test_loader, dataset.query, dataset.gallery, metric)
        return

    train_transformer = [
        T.Resize((args.height, args.width), interpolation=3),
        T.RandomHorizontalFlip(),
        T.Pad(10),
        T.RandomCrop((args.height, args.width)),
        T.ToTensor(),
        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        T.RandomErasing(probability=0.5),
    ]
    train_transformer = T.Compose(train_transformer)
    for cluster_epoch in range(args.cluster_epochs):
        # -------------------------Stage 1 intra camera training--------------------------
        # Cluster and generate new dataset and model
        # Divides the training set into (subsets) and according to that each camera id is there for each image
        # then it forms clustering on each subset according to the pair wise similarity
        # then assigning images with in each cluster with identical label 
        # then cross entropy loss is used 
        cluster_result = get_intra_cam_cluster_result(model, train_loader,
                                                      args.class_number_stage1,
                                                      args.linkage)
        cluster_datasets = [
            datasets.create("cluster", osp.join(args.data_dir, args.dataset),
                            cluster_result[cam_id], cam_id)
            for cam_id in cluster_result.keys()
        ]

        cluster_dataloaders = [
            DataLoader(Preprocessor(dataset.train_set,
                                    root=dataset.images_dir,
                                    transform=train_transformer),
                       batch_size=args.batch_size,
                       num_workers=args.workers,
                       shuffle=True,
                       pin_memory=False,
                       drop_last=True) for dataset in cluster_datasets
        ]
        param_dict = model.model.state_dict()
        model = models.create("ft_net_intra",
                              num_classes=[
                                  args.class_number_stage1
                                  for cam_id in cluster_result.keys()
                              ],
                              stride=args.stride)

        model_param_dict = model.model.state_dict()
        for k, v in model_param_dict.items():
            if k in param_dict.keys():
                model_param_dict[k] = param_dict[k]
        model.model.load_state_dict(model_param_dict)

        model = model.cuda()
        criterion = nn.CrossEntropyLoss().cuda()

        # Optimizer
        param_groups = make_params(model, args.lr, args.weight_decay)
        optimizer = torch.optim.SGD(param_groups, momentum=0.9)
        # Trainer
        trainer = IntraCameraTrainer(
            model, criterion, warm_up_epoch=args.warm_up)
        print("start training")
        # Start training
        for epoch in range(0, args.epochs_stage1):
            trainer.train(cluster_epoch,
                          epoch,
                          cluster_dataloaders,
                          optimizer,
                          print_freq=args.print_freq,
                          )
        # -------------------------------------------Stage 2 inter camera training-----------------------------------
        mix_rate = get_mix_rate(
            args.mix_rate, cluster_epoch, args.cluster_epochs, power=args.decay_factor)

        cluster_result = get_inter_cam_cluster_result(
            model,
            train_loader,
            args.class_number_stage2,
            args.linkage,
            mix_rate,
            use_cpu=args.use_cpu)

        cluster_dataset = datasets.create(
            "cluster", osp.join(args.data_dir, args.dataset), cluster_result,
            0)

        cluster_dataloaders = DataLoader(
            Preprocessor(cluster_dataset.train_set,
                         root=cluster_dataset.images_dir,
                         transform=train_transformer),
            batch_size=args.batch_size_stage2,
            num_workers=args.workers,
            sampler=RandomIdentitySampler(cluster_dataset.train_set,
                                          args.batch_size_stage2,
                                          args.instances),
            pin_memory=False,
            drop_last=True)

        param_dict = model.model.state_dict()
        model = models.create("ft_net_inter",
                              num_classes=args.class_number_stage2,
                              stride=args.stride)
        model.model.load_state_dict(param_dict)

        model = model.cuda()
        # Criterion
        criterion_entropy = nn.CrossEntropyLoss().cuda()
        criterion_triple = TripletLoss(margin=args.margin).cuda()

        # Optimizer
        param_groups = make_params(model,
                                   args.lr * args.batch_size_stage2 / 32,
                                   args.weight_decay)

        optimizer = torch.optim.SGD(param_groups, momentum=0.9)
        # Trainer
        trainer = InterCameraTrainer(model,
                                     criterion_entropy,
                                     criterion_triple,
                                     warm_up_epoch=args.warm_up,
                                     )

        print("start training")
        # Start training
        for epoch in range(0, args.epochs_stage2):
            trainer.train(cluster_epoch,
                          epoch,
                          cluster_dataloaders,
                          optimizer,
                          print_freq=args.print_freq)
        if (cluster_epoch + 1) % 5 == 0: # in 4th, 9th, 14th epochs, see in the output

            evaluator = Evaluator(model, use_cpu=args.use_cpu)
            top1, mAP = evaluator.evaluate(
                test_loader, dataset.query, dataset.gallery, metric, return_mAP=True)

            is_best = top1 > best_top1
            best_top1 = max(top1, best_top1)

            save_checkpoint(
                {
                    'state_dict': model.state_dict(),
                    'epoch': cluster_epoch + 1,
                    'best_top1': best_top1,
                    'cluster_epoch': cluster_epoch + 1,
                },
                is_best,
                fpath=osp.join(args.logs_dir, 'checkpoint.pth.tar'))
        if cluster_epoch == (args.cluster_epochs - 1):
            save_checkpoint(
                {
                    'state_dict': model.state_dict(),
                    'epoch': cluster_epoch + 1,
                    'best_top1': best_top1,
                    'cluster_epoch': cluster_epoch + 1,
                },
                False,
                fpath=osp.join(args.logs_dir, 'latest.pth.tar'))

        print('\n * cluster_epoch: {:3d} top1: {:5.1%}  best: {:5.1%}{}\n'.
              format(cluster_epoch, top1, best_top1, ' *' if is_best else ''))

    # Final test
    print('Test with best model:')
    checkpoint = load_checkpoint(osp.join(args.logs_dir, 'model_best.pth.tar'))
    model.load_state_dict(checkpoint['state_dict'])
    best_rank1, mAP = evaluator.evaluate(
        test_loader, dataset.query, dataset.gallery, metric, return_mAP=True)