Пример #1
0
    def learn(self, total_timesteps, callback=None, log_interval=1, tb_log_name="PPO2", reset_num_timesteps=True):

        # Transform to callable if needed

        self.learning_rate = get_schedule_fn(self.learning_rate)
        self.cliprange = get_schedule_fn(self.cliprange)
        cliprange_vf = get_schedule_fn(self.cliprange_vf)

        new_tb_log = self._init_num_timesteps(reset_num_timesteps)
        callback = self._init_callback(callback)

        with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) as writer:
            self._setup_learn()

            t_first_start = time.time()
            n_updates = total_timesteps // self.n_batch

            callback.on_training_start(locals(), globals())

            for update in range(1, n_updates + 1):

                assert self.n_batch % self.nminibatches == 0, ("The number of minibatches (`nminibatches`) "
                                                               "is not a factor of the total number of samples "
                                                               "collected per rollout (`n_batch`), "
                                                               "some samples won't be used."
                                                               )
                batch_size = self.n_batch // self.nminibatches
                t_start = time.time()
                frac = 1.0 - (update - 1.0) / n_updates
                lr_now = self.learning_rate(frac)
                cliprange_now = self.cliprange(frac)
                cliprange_vf_now = cliprange_vf(frac)

                callback.on_rollout_start()
                # true_reward is the reward without discount
                rollout = self.runner.run(callback)

                # Unpack

                obs, obs_next, returns, masks, actions, values, neglogpacs, states, ep_infos, true_reward = rollout

                #for item in [obs, obs_next, returns, masks, actions, values, neglogpacs, states, true_reward]:
                #    if item is not None:
                #        print(item.shape)
                #print(ep_infos)

                callback.on_rollout_end()

                # Early stopping due to the callback
                if not self.runner.continue_training:
                    break

                self.ep_info_buf.extend(ep_infos)
                mb_loss_vals = []
                if states is None:  # nonrecurrent version
                    update_fac = max(self.n_batch // self.nminibatches // self.noptepochs, 1)
                    inds = np.arange(self.n_batch)
                    for epoch_num in range(self.noptepochs):
                        np.random.shuffle(inds)
                        for start in range(0, self.n_batch, batch_size):
                            timestep = self.num_timesteps // update_fac + ((epoch_num * self.n_batch + start) // batch_size)
                            end = start + batch_size
                            mbinds = inds[start:end]
                            slices = (arr[mbinds] for arr in (obs, obs_next, returns, true_reward, masks, actions, values, neglogpacs))
                            mb_loss_vals.append(self._train_step(lr_now, cliprange_now, *slices, writer=writer, update=timestep, cliprange_vf=cliprange_vf_now))
                else:  # recurrent version
                    update_fac = max(self.n_batch // self.nminibatches // self.noptepochs // self.n_steps, 1)
                    assert self.n_envs % self.nminibatches == 0
                    env_indices = np.arange(self.n_envs)
                    flat_indices = np.arange(self.n_envs * self.n_steps).reshape(self.n_envs, self.n_steps)
                    envs_per_batch = batch_size // self.n_steps
                    for epoch_num in range(self.noptepochs):
                        np.random.shuffle(env_indices)
                        for start in range(0, self.n_envs, envs_per_batch):
                            timestep = self.num_timesteps // update_fac + ((epoch_num * self.n_envs + start) // envs_per_batch)
                            end = start + envs_per_batch
                            mb_env_inds = env_indices[start:end]
                            mb_flat_inds = flat_indices[mb_env_inds].ravel()
                            slices = (arr[mb_flat_inds] for arr in (obs, returns, masks, actions, values, neglogpacs))
                            mb_states = states[mb_env_inds]
                            mb_loss_vals.append(self._train_step(lr_now, cliprange_now, *slices, update=timestep,
                                                                 writer=writer, states=mb_states,
                                                                 cliprange_vf=cliprange_vf_now))

                loss_vals = np.mean(mb_loss_vals, axis=0)
                t_now = time.time()
                fps = int(self.n_batch / (t_now - t_start))

                if writer is not None:
                    total_episode_reward_logger(self.episode_reward,
                                                true_reward.reshape((self.n_envs * self.n_runs, self.n_steps)),
                                                masks.reshape((self.n_envs * self.n_runs, self.n_steps)),
                                                writer, self.num_timesteps)

                if self.verbose >= 1 and (update % log_interval == 0 or update == 1):
                    explained_var = explained_variance(values, returns)
                    logger.logkv("serial_timesteps", update * self.n_steps)
                    logger.logkv("n_updates", update)
                    logger.logkv("total_timesteps", self.num_timesteps)
                    logger.logkv("fps", fps)
                    logger.logkv("explained_variance", float(explained_var))
                    if len(self.ep_info_buf) > 0 and len(self.ep_info_buf[0]) > 0:
                        logger.logkv('ep_reward_mean', safe_mean([ep_info['r'] for ep_info in self.ep_info_buf]))
                        logger.logkv('ep_normal_mean', safe_mean([ep_info['n'] for ep_info in self.ep_info_buf]))
                        logger.logkv('ep_attack_mean', safe_mean([ep_info['a'] for ep_info in self.ep_info_buf]))
                        logger.logkv('ep_precision_mean', safe_mean([ep_info['p'] for ep_info in self.ep_info_buf]))
                    logger.logkv('time_elapsed', t_start - t_first_start)
                    for (loss_val, loss_name) in zip(loss_vals, self.loss_names):
                        logger.logkv(loss_name, loss_val)
                    logger.dumpkvs()

            callback.on_training_end()
            return self
Пример #2
0
    nruns = 4 // nenvs

    try:

        # continue training

        if args.timestamp is None:
            checkpoint = find_checkpoint_with_max_step(modeldir)
        else:
            checkpoint = f'rl_model_{args.timestamp}_steps.zip'

        fname = osp.join(logdir, progress)
        p = pd.read_csv(fname, delimiter=',', dtype=float)
        logger.configure(os.path.abspath(logdir), format_strs)
        keys = p.keys()
        vals = p.values
        for i in range(vals.shape[0]):
            for j in range(len(keys)):
                logger.logkv(keys[j], vals[i, j])
            logger.dumpkvs()
        model = algorithm.load(osp.join(modeldir, checkpoint))
        model.set_env(env)
        print('Model has been loaded from {0}!'.format(checkpoint))
    except Exception as e:
        print(e)
        print('Could not load the model, a new model will be created!')
        logger.configure(os.path.abspath(logdir), format_strs)
        model = algorithm(policy, env, n_runs=nruns, n_steps=nsteps, verbose=1)
    finally:
        cb = CheckpointCallback(nsteps * nenvs * nruns, modeldir, verbose=1)
        model.learn(total_timesteps=total_steps, callback=cb)
Пример #3
0
    def learn(self,
              total_timesteps,
              callback=None,
              log_interval=4,
              tb_log_name="SAC",
              reset_num_timesteps=True,
              replay_wrapper=None):

        new_tb_log = self._init_num_timesteps(reset_num_timesteps)
        callback = self._init_callback(callback)

        if replay_wrapper is not None:
            self.replay_buffer = replay_wrapper(self.replay_buffer)

        with SetVerbosity(self.verbose), TensorboardWriter(self.graph, self.tensorboard_log, tb_log_name, new_tb_log) \
                as writer:

            self._setup_learn()

            # Transform to callable if needed
            self.learning_rate = get_schedule_fn(self.learning_rate)
            # Initial learning rate
            current_lr = self.learning_rate(1)

            start_time = time.time()
            episode_rewards = [0.0]
            episode_successes = []
            if self.action_noise is not None:
                self.action_noise.reset()
            obs = self.env.reset()
            # Retrieve unnormalized observation for saving into the buffer
            if self._vec_normalize_env is not None:
                obs_ = self._vec_normalize_env.get_original_obs().squeeze()

            n_updates = 0
            infos_values = []

            callback.on_training_start(locals(), globals())
            callback.on_rollout_start()

            for step in range(total_timesteps):
                # Before training starts, randomly sample actions
                # from a uniform distribution for better exploration.
                # Afterwards, use the learned policy
                # if random_exploration is set to 0 (normal setting)
                if self.num_timesteps < self.learning_starts or np.random.rand(
                ) < self.random_exploration:
                    # actions sampled from action space are from range specific to the environment
                    # but algorithm operates on tanh-squashed actions therefore simple scaling is used
                    unscaled_action = self.env.action_space.sample()
                    action = scale_action(self.action_space, unscaled_action)
                else:
                    action = self.policy_tf.step(
                        obs[None], deterministic=False).flatten()
                    # Add noise to the action (improve exploration,
                    # not needed in general)
                    if self.action_noise is not None:
                        action = np.clip(action + self.action_noise(), -1, 1)
                    # inferred actions need to be transformed to environment action_space before stepping
                    unscaled_action = unscale_action(self.action_space, action)

                assert action.shape == self.env.action_space.shape

                new_obs, reward, done, info = self.env.step(unscaled_action)

                self.num_timesteps += 1

                # Only stop training if return value is False, not when it is None. This is for backwards
                # compatibility with callbacks that have no return statement.
                callback.update_locals(locals())
                if callback.on_step() is False:
                    break

                # Store only the unnormalized version
                if self._vec_normalize_env is not None:
                    new_obs_ = self._vec_normalize_env.get_original_obs(
                    ).squeeze()
                    reward_ = self._vec_normalize_env.get_original_reward(
                    ).squeeze()
                else:
                    # Avoid changing the original ones
                    obs_, new_obs_, reward_ = obs, new_obs, reward

                # Store transition in the replay buffer.
                self.replay_buffer_add(obs_, action, reward_, new_obs_, done,
                                       info)
                obs = new_obs
                # Save the unnormalized observation
                if self._vec_normalize_env is not None:
                    obs_ = new_obs_

                # Retrieve reward and episode length if using Monitor wrapper
                #maybe_ep_info = info.get('episode')
                #if maybe_ep_info is not None:
                self.ep_info_buf.extend([{'r': reward}])

                if writer is not None:
                    # Write reward per episode to tensorboard
                    ep_reward = np.array([reward_]).reshape((1, -1))
                    ep_done = np.array([done]).reshape((1, -1))
                    tf_util.total_episode_reward_logger(
                        self.episode_reward, ep_reward, ep_done, writer,
                        self.num_timesteps)

                if self.num_timesteps % self.train_freq == 0:
                    callback.on_rollout_end()

                    mb_infos_vals = []
                    # Update policy, critics and target networks
                    for grad_step in range(self.gradient_steps):
                        # Break if the warmup phase is not over
                        # or if there are not enough samples in the replay buffer
                        if not self.replay_buffer.can_sample(self.batch_size) \
                           or self.num_timesteps < self.learning_starts:
                            break
                        n_updates += 1
                        # Compute current learning_rate
                        frac = 1.0 - step / total_timesteps
                        current_lr = self.learning_rate(frac)
                        # Update policy and critics (q functions)
                        mb_infos_vals.append(
                            self._train_step(step, writer, current_lr))
                        # Update target network
                        if (step +
                                grad_step) % self.target_update_interval == 0:
                            # Update target network
                            self.sess.run(self.target_update_op)
                    # Log losses and entropy, useful for monitor training
                    if len(mb_infos_vals) > 0:
                        infos_values = np.mean(mb_infos_vals, axis=0)

                    callback.on_rollout_start()

                episode_rewards[-1] += reward_
                if done:
                    if self.action_noise is not None:
                        self.action_noise.reset()
                    if not isinstance(self.env, VecEnv):
                        obs = self.env.reset()
                    episode_rewards.append(0.0)

                    maybe_is_success = info.get('is_success')
                    if maybe_is_success is not None:
                        episode_successes.append(float(maybe_is_success))

                if len(episode_rewards[-101:-1]) == 0:
                    mean_reward = -np.inf
                else:
                    mean_reward = round(
                        float(np.mean(episode_rewards[-101:-1])), 1)

                num_episodes = len(episode_rewards)
                # Display training infos
                #if self.verbose >= 1 and done and log_interval is not None and len(episode_rewards) % log_interval == 0:
                if (step + 1) % (self.batch_size * log_interval) == 0:
                    fps = int(step / (time.time() - start_time))
                    #logger.logkv("episodes", num_episodes)
                    #logger.logkv("mean 100 episode reward", mean_reward)
                    if len(self.ep_info_buf) > 0 and len(
                            self.ep_info_buf[0]) > 0:
                        logger.logkv(
                            'ep_reward_mean',
                            safe_mean([
                                ep_info['r'] for ep_info in self.ep_info_buf
                            ]))
                        #logger.logkv('eplenmean', safe_mean([ep_info['l'] for ep_info in self.ep_info_buf]))
                    logger.logkv("n_updates", n_updates)
                    logger.logkv("current_lr", current_lr)
                    logger.logkv("fps", fps)
                    logger.logkv('time_elapsed', int(time.time() - start_time))
                    if len(episode_successes) > 0:
                        logger.logkv("success rate",
                                     np.mean(episode_successes[-100:]))
                    if len(infos_values) > 0:
                        for (name, val) in zip(self.infos_names, infos_values):
                            logger.logkv(name, val)
                    logger.logkv("total_timesteps", self.num_timesteps)
                    logger.dumpkvs()
                    # Reset infos:
                    infos_values = []
            callback.on_training_end()
            return self