def HistogramPLOT_wbm(data, month, year): #Initiate Situation = [] mon = [ 'January', 'Febuary', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December' ] data01 = data[['DateTime', 'WS95']].copy() data01.dropna(how='any', inplace=True) logicY = (data01["DateTime"].apply(lambda x: x.year) == (year)) data01 = data01[logicY].copy() fig = plt.figure(figsize=(20, 32), facecolor='w', edgecolor='r') #Plotting 12 graph xvals = np.linspace(0, 30, 1000) for i in range(month): ax = plt.subplot2grid((4, 3), (int(np.floor(i / 3)), int(i % 3))) logic = (data01["DateTime"].apply(lambda x: x.month)) == (i + 1) ws = data01['WS95'][logic] ws = ws + 0.0001 failures = [] censored = [] threshold = 30 for item in ws: if item > threshold: censored.append(threshold) else: failures.append(item) xvals = np.linspace(0, 30, 1000) if (np.sum(logic) != 0): ax.hist(ws, bins=30, density=True) hist, edge = np.histogram(np.array(ws), bins=1000, range=(0, 30), density=True) wbm = Fit_Weibull_Mixture(failures=failures, right_censored=censored, show_plot=False, print_results=False) part1_pdf = Weibull_Distribution(alpha=wbm.alpha_1, beta=wbm.beta_1).PDF( xvals=xvals, show_plot=False) part2_pdf = Weibull_Distribution(alpha=wbm.alpha_2, beta=wbm.beta_2).PDF( xvals=xvals, show_plot=False) Mixture_PDF = part1_pdf * wbm.proportion_1 + part2_pdf * wbm.proportion_2 ax.plot(xvals, Mixture_PDF, label='Weibull_Mixture') ax.legend() ax.set_ylim(0, 0.18) ax.set_xlim(0, 30) ax.set_xticks([0, 5, 10, 15, 20, 25, 30]) ax.tick_params(axis="x", labelsize=30) ax.tick_params(axis="y", labelsize=26) ax.set_title('{}'.format(mon[i]), fontweight='bold', size=30) plt.tight_layout() plt.show()
def test_Fit_Weibull_Mixture(): group_1 = Weibull_Distribution(alpha=10, beta=3).random_samples(40, seed=2) group_2 = Weibull_Distribution(alpha=40, beta=4).random_samples(60, seed=2) raw_data = np.hstack([group_1, group_2]) data = make_right_censored_data(data=raw_data, threshold=40) fit = Fit_Weibull_Mixture(failures=data.failures, right_censored=data.right_censored, print_results=False, show_probability_plot=False) assert_allclose(fit.alpha_1, 8.711417800323375,rtol=rtol,atol=atol) assert_allclose(fit.alpha_2, 36.96927163816745, rtol=rtol, atol=atol) assert_allclose(fit.beta_1, 3.8780149153215278, rtol=rtol, atol=atol) assert_allclose(fit.beta_2, 4.901762153365169, rtol=rtol, atol=atol) assert_allclose(fit.AICc, 678.8135631521253, rtol=rtol, atol=atol) assert_allclose(fit.loglik, -334.08763263989243, rtol=rtol, atol=atol)
def test_Fit_Weibull_Mixture(): d1 = Weibull_Distribution(alpha=10, beta=3) d2 = Weibull_Distribution(alpha=40, beta=4) dist = Mixture_Model(distributions=[d1, d2], proportions=[0.2, 0.8]) raw_data = dist.random_samples(100, seed=2) data = make_right_censored_data(data=raw_data, threshold=dist.mean) MLE = Fit_Weibull_Mixture(failures=data.failures, right_censored=data.right_censored, show_probability_plot=False, print_results=False) assert_allclose(MLE.alpha_1, 11.06604639424718, rtol=rtol, atol=atol) assert_allclose(MLE.beta_1, 2.735078296796997, rtol=rtol, atol=atol) assert_allclose(MLE.alpha_2, 34.325433665495346, rtol=rtol, atol=atol) assert_allclose(MLE.beta_2, 7.60238532821206, rtol=rtol, atol=atol) assert_allclose(MLE.proportion_1, 0.23640116719132157, rtol=rtol, atol=atol) assert_allclose(MLE.proportion_2, 0.7635988328086785, rtol=rtol, atol=atol) assert_allclose(MLE.AICc, 471.97390405380236, rtol=rtol, atol=atol) assert_allclose(MLE.BIC, 484.3614571114024, rtol=rtol, atol=atol) assert_allclose(MLE.loglik, -230.66780309073096, rtol=rtol, atol=atol) assert_allclose(MLE.AD, 320.1963544647712, rtol=rtol, atol=atol)
def HistogramPLOT_all(data, month, year): #Initiate Situation = [] mon = [ 'January', 'Febuary', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December' ] #Get just Full day data logicF = (data["isFULL"].apply(lambda x: x) == (1)) data01 = data[logicF].copy() data01.fillna(method='ffill', inplace=True) logicY = (data01["DateTime"].apply(lambda x: x.year) == (year)) data01 = data01[logicY].copy() fig = plt.figure(figsize=(24, 18), dpi=80, facecolor='w', edgecolor='r') #Plotting 12 graph xvals = np.linspace(0, 30, 1000) for i in range(month): ax = plt.subplot2grid((4, 3), (int(np.floor(i / 3)), int(i % 3))) logic = (data01["DateTime"].apply(lambda x: x.month)) == (i + 1) ws = data01['WS95'][logic] ws = ws + 0.0001 failures = [] censored = [] threshold = 30 for item in ws: if item > threshold: censored.append(threshold) else: failures.append(item) xvals = np.linspace(0, 30, 1000) print(ws.shape) if (np.sum(logic) != 0): ax.hist(ws, bins=30, normed=True) hist, edge = np.histogram(np.array(ws), bins=1000, range=(0, 30), normed=True) wb2 = Fit_Weibull_2P(failures=failures, show_probability_plot=False, print_results=False) wb3 = Fit_Weibull_3P(failures=failures, show_probability_plot=False, print_results=False) gm2 = Fit_Gamma_2P(failures=failures, show_probability_plot=False, print_results=False) gm3 = Fit_Gamma_3P(failures=failures, show_probability_plot=False, print_results=False) ln2 = Fit_Lognormal_2P(failures=failures, show_probability_plot=False, print_results=False) wbm = Fit_Weibull_Mixture(failures=failures, right_censored=censored, show_plot=False, print_results=False) wb2_pdf = Weibull_Distribution(alpha=wb2.alpha, beta=wb2.beta).PDF( xvals=xvals, show_plot=True, label='Weibull_2P') wb3_pdf = Weibull_Distribution(alpha=wb3.alpha, beta=wb3.beta, gamma=wb3.gamma).PDF( xvals=xvals, show_plot=True, label='Weibull_3P') gm2_pdf = Gamma_Distribution(alpha=gm2.alpha, beta=gm2.beta).PDF(xvals=xvals, show_plot=True, label='Gamma_2P') gm3_pdf = Gamma_Distribution(alpha=gm3.alpha, beta=gm3.beta, gamma=gm3.gamma).PDF(xvals=xvals, show_plot=True, label='Gamma_3P') ln2_pdf = Lognormal_Distribution(mu=ln2.mu, sigma=ln2.sigma).PDF( xvals=xvals, show_plot=True, label='Lognormal_2P') part1_pdf = Weibull_Distribution(alpha=wbm.alpha_1, beta=wbm.beta_1).PDF( xvals=xvals, show_plot=False) part2_pdf = Weibull_Distribution(alpha=wbm.alpha_2, beta=wbm.beta_2).PDF( xvals=xvals, show_plot=False) Mixture_PDF = part1_pdf * wbm.proportion_1 + part2_pdf * wbm.proportion_2 ax.plot(xvals, Mixture_PDF, label='Weibull_Mixture') ax.legend() ax.set_ylim(0, 0.16) ax.set_xlim(0, 30) ax.set_xticks([0, 5, 10, 15, 20, 25, 30]) ax.tick_params(axis="x", labelsize=20) ax.tick_params(axis="y", labelsize=20) ax.set_title('{}'.format(mon[i]), fontweight='bold', size=20) plt.tight_layout() plt.show()