def solve(self):
        T = self.g.size
        with self.profiler('Gurobi model optimization',
                           extra_data={
                               'T': str(T),
                               'budget': str(self.budget)
                           }):
            with Timer("ILPSolve") as solve_ilp:
                self.m.optimize()
            self.solve_time = solve_ilp.elapsed

        infeasible = (self.m.status == GRB.INFEASIBLE)
        try:
            _ = self.R[0, 0].X
            _ = self.S[0, 0].X
            _ = self.U[0, 0].X
            _ = self.batch_size.X
        except AttributeError as e:
            infeasible = True

        if infeasible:
            raise ValueError(
                "Infeasible model, check constraints carefully. Insufficient memory?"
            )

        Rout = np.zeros((T, T), dtype=SOLVER_DTYPE)
        Sout = np.zeros((T, T), dtype=SOLVER_DTYPE)
        Uout = np.zeros((T, T), dtype=SOLVER_DTYPE)
        Free_Eout = np.zeros((T, len(self.g.edge_list)), dtype=SOLVER_DTYPE)
        batch_size = self.batch_size.X
        try:
            for t in range(T):
                for i in range(T):
                    Rout[t][i] = int(self.R[t, i].X)
                    Sout[t][i] = int(self.S[t, i].X)
                    Uout[t][i] = self.U[t, i].X * self.ram_gcd
                for e in range(len(self.g.edge_list)):
                    Free_Eout[t][e] = int(self.Free_E[t, e].X)
        except AttributeError as e:
            logging.exception(e)
            return None, None, None, None

        Rout = solve_r_opt(self.g,
                           Sout)  # prune R using optimal recomputation solver

        ilp_aux_data = ILPAuxData(U=Uout,
                                  Free_E=Free_Eout,
                                  ilp_approx=False,
                                  ilp_time_limit=0,
                                  ilp_eps_noise=0,
                                  ilp_num_constraints=self.m.numConstrs,
                                  ilp_num_variables=self.m.numVars)
        schedule, aux_data = schedule_from_rs(self.g, Rout, Sout)
        return ScheduledResult(solve_strategy=SolveStrategy.OPTIMAL_ILP_GC,
                               solver_budget=self.budget,
                               feasible=True,
                               schedule=schedule,
                               schedule_aux_data=aux_data,
                               solve_time_s=self.solve_time,
                               ilp_aux_data=ilp_aux_data), batch_size
Пример #2
0
def solve_checkpoint_last_node(g: DFGraph):
    """Checkpoint only one node between stages"""
    with Timer('solve_checkpoint_last_node') as timer_solve:
        s = np.zeros((g.size, g.size), dtype=SOLVER_DTYPE)
        np.fill_diagonal(s[1:], 1)
        r = solve_r_opt(g, s)
    schedule, aux_data = schedule_from_rs(g, r, s)
    return ScheduledResult(solve_strategy=SolveStrategy.CHECKPOINT_LAST_NODE,
                           solver_budget=0,
                           feasible=True,
                           schedule=schedule,
                           schedule_aux_data=aux_data,
                           solve_time_s=timer_solve.elapsed)
Пример #3
0
def solve_checkpoint_all(g: DFGraph):
    with Timer('solve_checkpoint_all') as timer_solve:
        s = gen_s_matrix_fixed_checkpoints(g, g.vfwd)
        r = solve_r_opt(g, s)
    schedule, aux_data = schedule_from_rs(g, r, s)
    return ScheduledResult(
        solve_strategy=SolveStrategy.CHECKPOINT_ALL,
        solver_budget=0,
        feasible=True,
        schedule=schedule,
        schedule_aux_data=aux_data,
        solve_time_s=timer_solve.elapsed
    )
Пример #4
0
def solve_chen_sqrtn(g: DFGraph, use_actuation_points: bool) -> ScheduledResult:
    with Timer('solve_chen_sqrtn') as timer_solve:
        C = g.checkpoint_set if use_actuation_points else g.checkpoint_set_all
        k = int(math.sqrt(len(C)))
        checkpoints = [v for idx, v in enumerate(C) if (idx + 1) % k == 0]
        S = gen_s_matrix_fixed_checkpoints(g, set(checkpoints))
        R = solve_r_opt(g, S)
    schedule, aux_data = schedule_from_rs(g, R, S)
    return ScheduledResult(
        solve_strategy=SolveStrategy.CHEN_SQRTN if use_actuation_points else SolveStrategy.CHEN_SQRTN_NOAP,
        solver_budget=0,
        feasible=True,
        schedule=schedule,
        schedule_aux_data=aux_data,
        solve_time_s=timer_solve.elapsed
    )
Пример #5
0
def solve_griewank(g: DFGraph, budget: int):
    # todo check graph is chain graph
    with Timer('solve_griewank') as timer_solve:
        r, s = _solve_griewank_to_rs(g, budget)
    schedule, aux_data = schedule_from_rs(g, r, s)
    griewank_feasible = (r is not None
                         and s is not None)  # griewank load from FS
    return ScheduledResult(
        solve_strategy=SolveStrategy.GRIEWANK_LOGN,
        solver_budget=budget,
        feasible=griewank_feasible,
        schedule=schedule,
        schedule_aux_data=aux_data,
        solve_time_s=timer_solve.
        elapsed  # this is technically just filesystem load time
    )
Пример #6
0
def solve_chen_greedy(g: DFGraph, segment_mem_B: int, use_actuation_points: bool):
    with Timer('solve_chen_greedy') as timer_solve:
        C = g.checkpoint_set if use_actuation_points else g.checkpoint_set_all
        temp = 0
        x = 0
        checkpoints = set()
        for v in g.topological_order_fwd:
            temp += g.cost_ram[v]
            if v in C and temp > segment_mem_B:
                x += g.cost_ram[v]
                temp = 0
                checkpoints.add(v)
        S = gen_s_matrix_fixed_checkpoints(g, checkpoints)
        R = solve_r_opt(g, S)
    schedule, aux_data = schedule_from_rs(g, R, S)
    return ScheduledResult(
        solve_strategy=SolveStrategy.CHEN_GREEDY if use_actuation_points else SolveStrategy.CHEN_GREEDY_NOAP,
        solver_budget=segment_mem_B,
        feasible=True,
        schedule=schedule,
        schedule_aux_data=aux_data,
        solve_time_s=timer_solve.elapsed
    )
Пример #7
0
def solve_ilp_gurobi(
    g: DFGraph,
    budget: int,
    seed_s: Optional[np.ndarray] = None,
    approx=True,
    imposed_schedule: ImposedSchedule = ImposedSchedule.FULL_SCHEDULE,
    solve_r=True,
    time_limit: Optional[int] = None,
    write_log_file: Optional[PathLike] = None,
    print_to_console=True,
    write_model_file: Optional[PathLike] = None,
    eps_noise=0.01,
    solver_cores=os.cpu_count()):
    """
    Memory-accurate solver with garbage collection.
    :param g: DFGraph -- graph definition extracted from model
    :param budget: int -- budget constraint for solving
    :param seed_s: np.ndarray -- optional parameter to set warm-start for solver, defaults to empty S
    :param approx: bool -- set true to return as soon as a solution is found that is within 1% of optimal
    :param imposed_schedule -- selects a set of constraints on R and S that impose a schedule or require some nodes to be computed
    :param solve_r -- if set, solve for the optimal R 
    :param time_limit: int -- time limit for solving in seconds
    :param write_log_file: if set, log gurobi to this file
    :param print_to_console: if set, print gurobi logs to the console
    :param write_model_file: if set, write output model file to this location
    :param eps_noise: float -- if set, inject epsilon noise into objective weights, default 0.5%
    :param solver_cores: int -- if set, use this number of cores for ILP solving
    """
    param_dict = {
        'LogToConsole': 1 if print_to_console else 0,
        'LogFile': str(write_log_file) if write_log_file is not None else "",
        'Threads': solver_cores,
        'TimeLimit': math.inf if time_limit is None else time_limit,
        'OptimalityTol': 1e-2 if approx else 1e-4,
        'IntFeasTol': 1e-3 if approx else 1e-5,
        'Presolve': 2,
        'StartNodeLimit': 10000000
    }
    ilpsolver = ILPSolver(g,
                          budget,
                          gurobi_params=param_dict,
                          seed_s=seed_s,
                          eps_noise=eps_noise,
                          imposed_schedule=imposed_schedule,
                          solve_r=solve_r,
                          write_model_file=write_model_file)
    ilpsolver.build_model()
    try:
        r, s, u, free_e = ilpsolver.solve()
        ilp_feasible = True
    except ValueError as e:
        logging.exception(e)
        r, s, u, free_e = (None, None, None, None)
        ilp_feasible = False
    ilp_aux_data = ILPAuxData(U=u,
                              Free_E=free_e,
                              ilp_approx=approx,
                              ilp_time_limit=time_limit,
                              ilp_eps_noise=eps_noise,
                              ilp_num_constraints=ilpsolver.m.numConstrs,
                              ilp_num_variables=ilpsolver.m.numVars,
                              ilp_imposed_schedule=imposed_schedule)
    schedule, aux_data = schedule_from_rs(g, r, s)
    return ScheduledResult(
        solve_strategy=SolveStrategy.OPTIMAL_ILP_GC,
        solver_budget=budget,
        feasible=ilp_feasible,
        schedule=schedule,
        schedule_aux_data=aux_data,
        solve_time_s=ilpsolver.solve_time,
        ilp_aux_data=ilp_aux_data,
    )