Пример #1
0
# Load model
# encoder = Encoder()
#encoder.train_step(random_sample.reshape((1, *random_sample.shape, 1)), parameters.reshape(1, *parameters.shape))
# encoder.load_weights(args.model)
encoder_inputs, encoder_outputs = SimpleEncoderArchitecture((256, 256, 1))
encoder = Model(inputs=encoder_inputs, outputs=encoder_outputs)
encoder.summary()

encoder.load_weights(einfo['model_weights_path'])
# Predict the parameters from the silhouette and generate a mesh
prediction = encoder.predict(silhouette.reshape(1, 256, 256, 1))
prediction = tf.cast(prediction, tf.float64)
print("Shape of predictions:'" + str(prediction.shape))
print(prediction[0, 82:85])

pred_pc, faces = smpl_model("../model.pkl", prediction[0, 72:82] * 0 + 1,
                            prediction[0, :72], prediction[0, 82:85] * 0)
# Render the mesh
pred_mesh = Mesh(pointcloud=pred_pc.numpy())
pred_mesh.faces = faces

if mesh is not None:
    mesh.render3D()

print("Rendering prediction")
pred_mesh.render3D()

# Now render their silhouettes
# cv2.imshow("True silhouette", silhouette)
# pred_mesh.render_silhouette(title="Predicted silhouette")
Пример #2
0
    def on_epoch_end(self, epoch, logs=None):
        """ Store the model loss and accuracy at the end of every epoch, and store a model prediction on data """
        self.epoch_log.write(
            json.dumps({
                'epoch': epoch,
                'loss': logs['loss']
            }) + '\n')

        if (epoch + 1) % self.period == 0 or epoch == 0:
            # Predict on all of the given silhouettes
            for data_type, data in self.pred_data.items():
                if data is not None:
                    if not isinstance(data, list) or type(data) == np.array:
                        data = np.array(data)
                        data = data.reshape(
                            (1, data.shape[0], data.shape[1], data.shape[2]))

                    #for i, silhouette in enumerate(data):
                    #    # Save silhouettes
                    #    silhouette *= 255
                    #    cv2.imwrite(os.path.join(self.pred_path, "{}_epoch.{:03d}.gt_silh_{:03d}.png".format(data_type, epoch + 1, i)), silhouette.astype("uint8"))

                    preds = self.model.predict(data)
                    #print("Predictions: " + str(preds))

                    for i, pred in enumerate(preds[1], 1):
                        #self.smpl.set_params(pred[:72].reshape((24, 3)), pred[72:82], pred[82:])
                        #self.smpl.save_to_obj(os.path.join(self.pred_path, "{}_pred_{:03d}.obj".format(data_type, i)))
                        #print_mesh(os.path.join(self.pred_path, "epoch.{:03d}.{}_gt_{:03d}.obj".format(epoch, data_type, i)), gt[i-1], smpl.faces)
                        print_mesh(
                            os.path.join(
                                self.pred_path,
                                "{}_epoch.{:03d}.pred_{:03d}.obj".format(
                                    data_type, epoch + 1, i)), pred,
                            self.smpl.faces)

                        # Store predicted silhouette and the difference between it and the GT silhouette
                        gt_silhouette = (data[i - 1] *
                                         255).astype("uint8").reshape(
                                             data.shape[1], data.shape[2])
                        #cv2.imwrite(os.path.join(self.pred_path, "{}_epoch.{:03d}.gt_silh_{:03d}.png".format(data_type, epoch + 1, i)), gt_silhouette)

                        pred_silhouette = Mesh(
                            pointcloud=pred).render_silhouette(show=False)
                        #cv2.imwrite(os.path.join(self.pred_path, "{}_epoch.{:03d}.pred_silh_{:03d}.png".format(data_type, epoch + 1, i)), pred_silhouette)

                        diff_silh = abs(gt_silhouette - pred_silhouette)
                        #print(diff_silh.shape)
                        #cv2.imshow("Diff silh", diff_silh)
                        #cv2.imwrite(os.path.join(self.pred_path, "{}_epoch.{:03d}.diff_silh_{:03d}.png".format(data_type, epoch + 1, i)), diff_silh.astype("uint8"))
                        silh_comp = np.concatenate(
                            [gt_silhouette, pred_silhouette, diff_silh])
                        cv2.imwrite(
                            os.path.join(
                                self.pred_path,
                                "{}_epoch.{:03d}.silh_comp_{:03d}.png".format(
                                    data_type, epoch + 1, i)),
                            silh_comp.astype("uint8"))

                        if self.gt_pc[data_type] is not None:
                            print_mesh(
                                os.path.join(
                                    self.pred_path,
                                    "{}_epoch.{:03d}.gt_pc_{:03d}.obj".format(
                                        data_type, epoch + 1, i)),
                                self.gt_pc[data_type], self.smpl.faces)
                            print_point_clouds(
                                os.path.join(
                                    self.pred_path,
                                    "{}_epoch.{:03d}.comparison_{:03d}.obj".
                                    format(data_type, epoch + 1, i)),
                                [pred, self.gt_pc[data_type]], [(255, 0, 0),
                                                                (0, 255, 0)])

                    if self.visualise:
                        # Show a random sample
                        rand_index = np.random.randint(low=0,
                                                       high=len(data)) + 1
                        mesh = Mesh(filepath=os.path.join(
                            self.pred_path, "{}_epoch.{:03d}.pred_{:03d}.obj".
                            format(data_type, epoch + 1, rand_index)))

                        # Show the true silhouette
                        true_silh = data[rand_index - 1]
                        true_silh = true_silh.reshape(true_silh.shape[:-1])
                        plt.imshow(true_silh, cmap='gray')
                        plt.title("True {} silhouette {:03d}".format(
                            data_type, rand_index))
                        plt.show()

                        # Show the predicted silhouette and mesh
                        mesh.render_silhouette(
                            title="Predicted {} silhouette {:03d}".format(
                                data_type, rand_index))
                        diff_silh = cv2.imread(
                            "{}_epoch.{:03d}.diff_silh_{:03d}.png".format(
                                data_type, epoch + 1, rand_index))
                        cv2.imshow(
                            "Predicted {} silhouette {:03d}".format(
                                data_type, rand_index), diff_silh)

                        try:
                            mesh.render3D()
                        except Exception:
                            pass