def test_mutated_tree(self):
        for _ in range(100):
            tree1 = pt_create.apply(random.randint(10, 35))
            tree2 = copy.deepcopy(tree1)
            sub1, sub2 = pt_mutate.change_node_operator(tree2, None)
            com_res = pt_compare.apply(tree1, tree2)
            self.assertEqual(str(sub1), str(com_res.subtree1))
            self.assertEqual(str(sub2), str(com_res.subtree2))

            tree2 = copy.deepcopy(tree1)
            sub1, sub2 = pt_mutate.add_new_node(tree2, None)
            com_res = pt_compare.apply(tree1, tree2)
            if sub1.operator == Operator.LOOP and sub1.children[
                    1].operator is not None:
                self.assertEqual(str(sub1.children[1]), str(com_res.subtree1))
                self.assertEqual(str(sub2.children[1]), str(com_res.subtree2))
            else:
                self.assertEqual(str(sub1), str(com_res.subtree1))
                self.assertEqual(str(sub2), str(com_res.subtree2))

            tree2 = copy.deepcopy(tree1)
            sub1, sub2 = pt_mutate.remove_node(tree2, None)
            com_res = pt_compare.apply(tree1, tree2)
            if (len(sub1.children) == 2 and
                (sub1.parent is None or
                 (sub2.operator is not None and
                  (sub1.parent is not None
                   and sub2.operator != sub1.parent.operator)) or sub2.operator
                 == Operator.LOOP)) or (len(sub1.children) > 2):
                self.assertEqual(str(sub1), str(com_res.subtree1))
                self.assertEqual(str(sub2), str(com_res.subtree2))
            else:
                self.assertEqual(str(sub1.parent), str(com_res.subtree1))
                self.assertEqual(str(sub2.parent), str(com_res.subtree2))
Пример #2
0
def compute_run_time():
    no_tree, no_event, pro, mutated_num = 10, 10, 0.9, 5
    tree1 = [pt_create.apply(random.randint(11, 15)) for _ in range(no_tree)]
    m_tree1 = [[pt_mutate.apply(tree) for _ in range(mutated_num)]
               for tree in tree1]
    log1 = [log_create.apply(tree, no_event, pro) for tree in tree1]
    tree2 = [pt_create.apply(random.randint(16, 20)) for _ in range(no_tree)]
    m_tree2 = [[pt_mutate.apply(tree) for _ in range(mutated_num)]
               for tree in tree2]
    log2 = [log_create.apply(tree, no_event, pro) for tree in tree2]
    tree3 = [pt_create.apply(random.randint(21, 25)) for _ in range(no_tree)]
    m_tree3 = [[pt_mutate.apply(tree) for _ in range(mutated_num)]
               for tree in tree3]
    log3 = [log_create.apply(tree, no_event, pro) for tree in tree3]
    tree4 = [pt_create.apply(random.randint(26, 30)) for _ in range(no_tree)]
    log4 = [log_create.apply(tree, no_event, pro) for tree in tree4]
    m_tree4 = [[pt_mutate.apply(tree) for _ in range(mutated_num)]
               for tree in tree4]
    # tree5 = [pt_create.apply(random.randint(31, 33)) for _ in range(no_tree)]
    # log5 = [log_create.apply(tree, no_event, pro) for tree in tree5]
    # m_tree5 = [[pt_mutate.apply(tree) for _ in range(mutated_num)] for tree in tree5]
    # tree6 = [pt_create.apply(random.randint(34, 35)) for _ in range(no_tree)]
    # log6 = [log_create.apply(tree, no_event, pro) for tree in tree6]
    # m_tree6 = [[pt_mutate.apply(tree) for _ in range(mutated_num)] for tree in tree6]

    l_without_lock = list(
        map(
            lambda tree_log: avg_runtime_without_lock(tree_log[0], tree_log[
                1], tree_log[2]), [(tree1, m_tree1, log1),
                                   (tree2, m_tree2, log2),
                                   (tree3, m_tree3, log3),
                                   (tree4, m_tree4, log4)]))
    # , (tree5, m_tree5, log5), (tree6, m_tree6, log6)
    l_with_lock = list(
        map(
            lambda tree_log: avg_runtime_with_lock(tree_log[0], tree_log[
                1], tree_log[2]), [(tree1, m_tree1, log1),
                                   (tree2, m_tree2, log2),
                                   (tree3, m_tree3, log3),
                                   (tree4, m_tree4, log4)]))
    # , (tree5, m_tree5, log5), (tree6, m_tree6, log6)
    plot_histogram_lock_runtime(l_without_lock, l_with_lock)
Пример #3
0
def create_pts():
    pts = list()
    for node_num in PT_RANGE:
        trees = pd.DataFrame(columns=['tree', '#node', 'depth', 'root-op'])
        for i in range(pt_num):
            tree = pt_create.apply(random.randint(node_num[0], node_num[1]))
            num_nodes = pt_number.apply(tree, 'D')
            trees.loc[i] = [
                str(tree), num_nodes,
                pt_mani_utils.pt_depth(tree),
                str(tree.operator)
            ]
        pts.append(trees)
    return pts
 def test_random_create_tree(self):
     for _ in range(100):
         tree1 = pt_create.apply(random.randint(10, 35))
         tree2 = pt_utils.parse(str(tree1))
         q1, q2 = list(), list()
         q1.append(tree1)
         q2.append(tree2)
         while len(q1) != 0:
             node1 = q1.pop(0)
             node2 = q2.pop(0)
             self.assertEqual(str(node1.parent), str(node2.parent))
             self.assertEqual(str(node1.children), str(node2.children))
             for i in range(len(node1.children)):
                 q1.append(node1.children[i])
                 q2.append(node2.children[i])
Пример #5
0
def pt_write_to_table(tab, mutate_tabs, num, l, u, mutate_num, mutate_level):
    for _ in range(num):
        row = tab.row
        # TODO: 一定时间内没有找到
        no_node = random.randint(l, u)
        tree = pt_create.apply(no_node)
        info = [
            no_node, " " + str(tree),
            pt_mani_utils.leaves_number(tree),
            pt_mani_utils.pt_depth(tree)
        ]
        for i, mutate_tab in enumerate(mutate_tabs):
            for m_tree in uniq_mutate_tree(tree, mutate_num, mutate_level[i]):
                mutate_tree_write_to_table(mutate_tab, m_tree, [row] + info)
        excel_utils.write_row_to_table(tab.table, row, info)
def creat_non_fitting_based_on_tree2(file, name, node_num, parameters):
    num = [
        "node", "best_worst_cost", "optimal_cost", "optimal_time",
        "repaired_cost", "repaired_time", "scope_repair_cost",
        "scope_repair_time", "grade1", "grade2"
    ]
    tree_num, mutated_num, log_num, non_fit_pro = 25, 1, 1, 0.9
    tree = [
        pt_create.apply(random.randint(node_num[0], node_num[1]))
        for _ in range(tree_num)
    ]
    m_tree = [[pt_mutate.apply(tree) for _ in range(mutated_num)]
              for tree in tree]
    log = [[
        log_create.apply(m_tree, log_num, non_fit_pro) for m_tree in m_tr4
    ] for m_tr4 in m_tree]
    for i in range(len(tree)):
        for j in range(len(m_tree[0])):
            result = compute_cost_and_time(tree[i], m_tree[i][j], log[i][j],
                                           parameters)
            print_tree_align_compare(result)
def creat_non_fitting_based_on_tree1(file, name, node_num):
    num = [
        "node", "best_worst_cost", "optimal_cost", "optimal_time",
        "repaired_cost", "repaired_time", "scope_repair_cost",
        "scope_repair_time", "grade1", "grade2"
    ]
    tree_num, mutated_num, log_num, non_fit_pro = 5, 1, 5, 0.9
    tree = [
        pt_create.apply(random.randint(node_num[0], node_num[1]))
        for _ in range(tree_num)
    ]
    m_tree = [[pt_mutate.apply(tree) for _ in range(mutated_num)]
              for tree in tree]
    log = [log_create.apply(tree, log_num, non_fit_pro) for tree in tree]
    for i in range(len(tree)):
        node_num = pt_mani_utils.non_none_leaves_number(tree[i])
        for j in range(len(m_tree[0])):
            param1 = {'ret_tuple_as_trans_desc': True, 'COMPARE_OPTION': 1}
            result = compute_cost_and_time(tree[i], m_tree[i][j], log[i],
                                           param1)
            print_tree_align_compare(result)
            result["node"] = node_num
 def test_random_create_tree_node(self):
     for _ in range(100):
         no_num = random.randint(10, 35)
         tree = pt_create.apply(no_num)
         index_num = pt_number.apply(tree, 'D', 1)
         self.assertEqual(no_num, index_num)