Пример #1
0
def test_learning_tracker_scheduled_should_output_dates_after_feedback():
    lt = LearningTracker(epoch=datetime.now())

    lt.learned(result=0.40, when=0.01)
    lt.learned(result=0.44, when=0.8)
    for offset in lt.schedule_as_offset(stop=10):
        assert offset > 0.8
Пример #2
0
def test_learning_tracker_broken_feedback_curve_reproduction():
    lt = LearningTracker(epoch=datetime.now())
    lt.learned(result=0.44, when=0.8)
    lt.learned(result=0.64, when=1.75)
    lt.learned(result=0.55, when=1.3)
    lt.learned(result=0.40, when=0.001)
    lt.learned(result=0.64, when=3.02)
    lt.plot_graphs(stop=30)
    lt.save_figure("results/lt_broken_feedback_curve.pdf")
Пример #3
0
def test_serialization_epoch():
    lt = LearningTracker(epoch=datetime.now(), )
    moments, results = get_feedback1()
    for index, (moment, result) in enumerate(zip(moments[0:4], results)):
        lt.learned(when=moment, result=result)

    byte_stream = pickle.dumps(lt)
    unpickled_learning_tracker = pickle.loads(byte_stream)
    hdl, _ = unpickled_learning_tracker.plot_graphs(stop=40)
    unpickled_learning_tracker.save_figure("results/post_pickle.pdf")
    hdl.close()
Пример #4
0
def test_learning_tracker_longterm_response():
    start_time = datetime.now()
    moments, results = get_feedback1()

    lt = LearningTracker(epoch=start_time)
    for index, (moment, result) in enumerate(zip(moments[0:2], results)):
        lt.learned(when=moment, result=result)

    hd, _ = lt.plot_graphs(stop=300)
    lt.save_figure("results/space_learning_tracker_too_long.pdf")
    hd.close()
Пример #5
0
def test_learning_tracker_broken_two_handle_graph():

    lt = LearningTracker(epoch=datetime.now())

    # give our learning tracker some feedback
    for d, r in zip(
        [0, 0.8, 1.75, 3.02, 4.8, 7.33],
        [0.40, 0.44, 0.64, 0.76, 0.83, 0.89],
    ):
        lt.learned(result=r, when=d)

    with lt.graphs(stop=43,
                   show=True,
                   control_handle=True,
                   reference_handle=True,
                   filename='results/context_manager_two_handles.svg') as (rh,
                                                                           ch):

        r_m = lt.reference.range_for(curve=3, stop=43, day_step_size=0.5)
        r_p = [lt.reference.predict_result(moment, curve=3) for moment in r_m]
        rh.plot(r_m, r_p, color='xkcd:ruby')
        c_m = lt.range_for(curve=1, stop=43, day_step_size=0.5)
        c_p = [lt.predict_result(moment, curve=1) for moment in c_m]
        ch.plot(c_m, c_p, color='xkcd:azure')
Пример #6
0
def test_learning_tracker_next_offset_feature():
    lt = LearningTracker(epoch=datetime.now())
    lt.learned(result=0.40, when=0.001)
    lt.learned(result=0.44, when=0.8)
    lt.learned(result=0.55, when=1.3)
    lt.learned(result=0.64, when=1.75)
    lt.learned(result=0.76, when=3.02)
    results = [
        [4.8, 7.33, 10.93, 16.00, 23.00, 29.00],
        [0.83, 0.89, 1.00, 0.99, 0.99, 1.00],
    ]

    for d, r in zip(*results):
        days_since_training_epoch, result = d, r
        lt.learned(result=result, when=days_since_training_epoch)

    sc = lt.next_offset()
    assert abs(sc - 122.4043) < 0.01