optimizer=opt,
             # loss=c_abs_metric,
             # metrics=[c_abs_metric,mean_absolute_error]
             loss=loss,
             metrics=[mean_absolute_error])
         early_stopping_monitor = EarlyStopping(patience=1)
         # checkpoint = ModelCheckpoint('./checkpoints/mlp.mdl',save_best_only=False)
         model.fit(
             x_train,
             y_train,
             batch_size=1,
             epochs=25,
             verbose=1,
             validation_data=(x_valid, y_valid),
             callbacks=[
                 early_stopping_monitor,
                 # checkpoint
             ])
         score = model.evaluate(x_test, y_test, batch_size=1, verbose=0)
         print(brand)
         print(loss)
         print(opt)
         print(score)
         models[brand] = model
     except Exception as e:
         print(e)
 # It's a simple report generator
 genRep = ReportGenerator('./output/' + brand + '/', y_test, x_test,
                          scaler_y)
 genRep.generate(models)
Пример #2
0
def main(report_file, unique_id):
    r = ReportGenerator(ReportFile=report_file, UniqueId=unique_id)
    r.import_data()
    r.process_data()
    r.generate()