optimizer=opt, # loss=c_abs_metric, # metrics=[c_abs_metric,mean_absolute_error] loss=loss, metrics=[mean_absolute_error]) early_stopping_monitor = EarlyStopping(patience=1) # checkpoint = ModelCheckpoint('./checkpoints/mlp.mdl',save_best_only=False) model.fit( x_train, y_train, batch_size=1, epochs=25, verbose=1, validation_data=(x_valid, y_valid), callbacks=[ early_stopping_monitor, # checkpoint ]) score = model.evaluate(x_test, y_test, batch_size=1, verbose=0) print(brand) print(loss) print(opt) print(score) models[brand] = model except Exception as e: print(e) # It's a simple report generator genRep = ReportGenerator('./output/' + brand + '/', y_test, x_test, scaler_y) genRep.generate(models)
def main(report_file, unique_id): r = ReportGenerator(ReportFile=report_file, UniqueId=unique_id) r.import_data() r.process_data() r.generate()