sim.launch(nbr_try, step_propagation, step_statictics, step_learn) sim.plot(12, 'FoN_rms', [ 'FoN_rms', 'SoN_rms', 'SoN_rms_input', 'SoN_rms_hidden', 'SoN_rms_output' ], [ "FoN", "SoN", "SoN input layer", "SoN hidden layer", "SoN output layer" ], [3, 3, 2, 2, 2], moregraph1) sim.plot(12, 'FoN_rms', ['FoN_err', 'SoN_err_input', 'SoN_err_hidden', 'SoN_err_output'], [ "FoN ( winner take all )", "SoN input layer ( x > 0.5 => activation )", "SoN hidden layer ( | x - o | <= 0.3 )", "SoN output layer ( winner take all )" ], [3, 2, 2, 2], moregraph2) sim.custom_plot([Simulation.DISCRETIZE, Simulation.PROTOTYPE]) #Representations hidden graph_networkhidden(sim.networks[0]['FoN'], width, (8, 8, 1)) #Representations on = [] hn = [] for net in sim.networks: on.append(net['FoN'].outputNeurons) hn.append(net['FoN'].hiddenNeurons) graph_network(on, hn, width)
sim.launch(nbr_try, step_propagation, step_statictics, step_learn) sim.plot(point, 'FoN_rms', [ 'FoN_rms', 'SoN_rms', 'SoN_rms_input', 'SoN_rms_hidden', 'SoN_rms_output' ], [ "FoN", "SoN", "SoN input layer", "SoN hidden layer", "SoN output layer" ], [3, 3, 2, 2, 2], moregraph1) sim.plot(point, 'FoN_rms', ['FoN_err', 'SoN_err_input', 'SoN_err_hidden', 'SoN_err_output'], [ "FoN ( winner take all )", "SoN input layer ( x > 0.5 => activation )", "SoN hidden layer ( | x - o | <= 0.3 )", "SoN output layer ( winner take all )" ], [3, 2, 2, 2], moregraph2) sim.custom_plot([Simulation.DISCRETIZE, Simulation.PROTOTYPE]) #Representations hidden graph_networkhidden(sim.networks[0]['FoN'], Hwidth, 151) #Representations on = [] hn = [] for net in sim.networks: on.append(net['FoN'].outputNeurons) hn.append(net['FoN'].hiddenNeurons) graph_network(on, hn, width)
sim = Simulation(nbr_epoch, width, data, nbr_network, [FoN, SoN]) sim.dgraph(['FoN_rms', 'SoN_rms', 'SoN_rms_input', 'SoN_rms_hidden', 'SoN_rms_output', 'FoN_err', 'SoN_err_input', 'SoN_err_hidden', 'SoN_err_output'], [Simulation.DISCRETIZE]) sim.launch(nbr_try, step_propagation, step_statictics, step_learn) sim.plot(12, 'FoN_rms', ['FoN_rms', 'SoN_rms', 'SoN_rms_input', 'SoN_rms_hidden', 'SoN_rms_output'], ["FoN" , "SoN", "SoN input layer", "SoN hidden layer", "SoN output layer"], [3, 3, 2, 2 , 2 ], moregraph1) sim.plot(12, 'FoN_rms', ['FoN_err', 'SoN_err_input', 'SoN_err_hidden', 'SoN_err_output'], ["FoN ( winner take all )" , "SoN input layer ( x > 0.5 => activation )", "SoN hidden layer ( | x - o | <= 0.3 )", "SoN output layer ( winner take all )"], [3, 2, 2, 2 ], moregraph2) sim.custom_plot([Simulation.DISCRETIZE, Simulation.PROTOTYPE]) #Representations hidden graph_networkhidden(sim.networks[0]['FoN'], width, (8,8,1)) #Representations on = [] hn = [] for net in sim.networks: on.append(net['FoN'].outputNeurons) hn.append(net['FoN'].hiddenNeurons) graph_network(on, hn, width)
sim = Simulation(nbr_epoch, width, data, nbr_network, [FoN, SoN]) sim.dgraph(['FoN_rms', 'SoN_rms', 'SoN_rms_input', 'SoN_rms_hidden', 'SoN_rms_output', 'FoN_err', 'SoN_err_input', 'SoN_err_hidden', 'SoN_err_output'], [Simulation.DISCRETIZE]) sim.launch(nbr_try, step_propagation, step_statictics, step_learn) sim.plot(point, 'FoN_rms', ['FoN_rms', 'SoN_rms', 'SoN_rms_input', 'SoN_rms_hidden', 'SoN_rms_output'], ["FoN" , "SoN", "SoN input layer", "SoN hidden layer", "SoN output layer"], [3, 3, 2, 2 , 2 ], moregraph1) sim.plot(point, 'FoN_rms', ['FoN_err', 'SoN_err_input', 'SoN_err_hidden', 'SoN_err_output'], ["FoN ( winner take all )" , "SoN input layer ( x > 0.5 => activation )", "SoN hidden layer ( | x - o | <= 0.3 )", "SoN output layer ( winner take all )"], [3, 2, 2 , 2 ], moregraph2) sim.custom_plot([Simulation.DISCRETIZE, Simulation.PROTOTYPE]) #Representations hidden graph_networkhidden(sim.networks[0]['FoN'], Hwidth, 151) #Representations on = [] hn = [] for net in sim.networks: on.append(net['FoN'].outputNeurons) hn.append(net['FoN'].hiddenNeurons) graph_network(on, hn, width)