Пример #1
0
def _save(im, fp, filename):

    if im.mode != "1":
        raise IOError, "cannot write mode %s as MSP" % im.mode

    # create MSP header
    header = [0] * 16

    header[0], header[1] = i16("Da"), i16("nM")  # version 1
    header[2], header[3] = im.size
    header[4], header[5] = 1, 1
    header[6], header[7] = 1, 1
    header[8], header[9] = im.size

    sum = 0
    for h in header:
        sum = sum ^ h
    header[12] = sum  # FIXME: is this the right field?

    # header
    for h in header:
        fp.write(o16(h))

    # image body
    ImageFile._save(im, fp, [("raw", (0, 0) + im.size, 32, ("1", 0, 1))])
Пример #2
0
def getdata(im, offset = (0, 0), **params):
    """Return a list of strings representing this image.
       The first string is a local image header, the rest contains
       encoded image data."""

    class collector:
        data = []
        def write(self, data):
            self.data.append(data)

    im.load() # make sure raster data is available

    fp = collector()

    try:
        im.encoderinfo = params

        # local image header
        fp.write("," +
                 o16(offset[0]) +       # offset
                 o16(offset[1]) +
                 o16(im.size[0]) +      # size
                 o16(im.size[1]) +
                 chr(0) +               # flags
                 chr(8))                # bits

        ImageFile._save(im, fp, [("gif", (0,0)+im.size, 0, RAWMODE[im.mode])])

        fp.write("\0") # end of image data

    finally:
        del im.encoderinfo

    return fp.data
Пример #3
0
def _save(im, fp, filename, check=0):

    try:
        rawmode, bits, colormaptype, imagetype = SAVE[im.mode]
    except KeyError:
        raise IOError("cannot write mode %s as TGA" % im.mode)

    if check:
        return check

    if colormaptype:
        colormapfirst, colormaplength, colormapentry = 0, 256, 24
    else:
        colormapfirst, colormaplength, colormapentry = 0, 0, 0

    if im.mode == "RGBA":
        flags = 8
    else:
        flags = 0

    orientation = im.info.get("orientation", -1)
    if orientation > 0:
        flags = flags | 0x20

    fp.write("\000" + chr(colormaptype) + chr(imagetype) + o16(colormapfirst) +
             o16(colormaplength) + chr(colormapentry) + o16(0) + o16(0) +
             o16(im.size[0]) + o16(im.size[1]) + chr(bits) + chr(flags))

    if colormaptype:
        fp.write(im.im.getpalette("RGB", "BGR"))

    ImageFile._save(im, fp,
                    [("raw", (0, 0) + im.size, 0, (rawmode, 0, orientation))])
Пример #4
0
def _save(im, fp, filename, check=0):

    try:
        type, rawmode = SAVE[im.mode]
    except KeyError:
        raise ValueError, "Cannot save %s images as IM" % im.mode

    try:
        frames = im.encoderinfo["frames"]
    except KeyError:
        frames = 1

    if check:
        return check

    fp.write("Image type: %s image\r\n" % type)
    if filename:
        fp.write("Name: %s\r\n" % filename)
    fp.write("Image size (x*y): %d*%d\r\n" % im.size)
    fp.write("File size (no of images): %d\r\n" % frames)
    if im.mode == "P":
        fp.write("Lut: 1\r\n")
    fp.write("\000" * (511-fp.tell()) + "\032")
    if im.mode == "P":
        fp.write(im.im.getpalette("RGB", "RGB;L")) # 768 bytes
    ImageFile._save(im, fp, [("raw", (0,0)+im.size, 0, (rawmode, 0, -1))])
Пример #5
0
def _save(im, fp, filename):

    if im.mode != "1":
        raise IOError, "cannot write mode %s as MSP" % im.mode

    # create MSP header
    header = [0] * 16

    header[0], header[1] = i16("Da"), i16("nM")  # version 1
    header[2], header[3] = im.size
    header[4], header[5] = 1, 1
    header[6], header[7] = 1, 1
    header[8], header[9] = im.size

    sum = 0
    for h in header:
        sum = sum ^ h
    header[12] = sum  # FIXME: is this the right field?

    # header
    for h in header:
        fp.write(o16(h))

    # image body
    ImageFile._save(im, fp, [("raw", (0, 0) + im.size, 32, ("1", 0, 1))])
Пример #6
0
def _save(im, fp, filename, check=0):

    try:
        version, bits, planes, rawmode = SAVE[im.mode]
    except KeyError:
        raise ValueError, "Cannot save %s images as PCX" % im.mode

    if check:
        return check

    # bytes per plane
    stride = (im.size[0] * bits + 7) / 8

    # under windows, we could determine the current screen size with
    # "Image.core.display_mode()[1]", but I think that's overkill...

    screen = im.size

    dpi = 100, 100

    # PCX header
    fp.write(
        chr(10)
        + chr(version)
        + chr(1)
        + chr(bits)
        + o16(0)
        + o16(0)
        + o16(im.size[0] - 1)
        + o16(im.size[1] - 1)
        + o16(dpi[0])
        + o16(dpi[1])
        + chr(0) * 24
        + chr(255) * 24
        + chr(0)
        + chr(planes)
        + o16(stride)
        + o16(1)
        + o16(screen[0])
        + o16(screen[1])
        + chr(0) * 54
    )

    assert fp.tell() == 128

    ImageFile._save(im, fp, [("pcx", (0, 0) + im.size, 0, (rawmode, bits * planes))])

    if im.mode == "P":
        # colour palette
        fp.write(chr(12))
        fp.write(im.im.getpalette("RGB", "RGB"))  # 768 bytes
    elif im.mode == "L":
        # greyscale palette
        fp.write(chr(12))
        for i in range(256):
            fp.write(chr(i) * 3)
Пример #7
0
def _save(im, fp, filename):

    try:
        rawmode = RAWMODE[im.mode]
    except KeyError:
        raise IOError("cannot write mode %s as JPEG" % im.mode)

    info = im.encoderinfo

    dpi = info.get("dpi", (0, 0))

    subsampling = info.get("subsampling", -1)
    if subsampling == "4:4:4":
        subsampling = 0
    elif subsampling == "4:2:2":
        subsampling = 1
    elif subsampling == "4:1:1":
        subsampling = 2

    extra = ""

    icc_profile = info.get("icc_profile")
    if icc_profile:
        ICC_OVERHEAD_LEN = 14
        MAX_BYTES_IN_MARKER = 65533
        MAX_DATA_BYTES_IN_MARKER = MAX_BYTES_IN_MARKER - ICC_OVERHEAD_LEN
        markers = []
        while icc_profile:
            markers.append(icc_profile[:MAX_DATA_BYTES_IN_MARKER])
            icc_profile = icc_profile[MAX_DATA_BYTES_IN_MARKER:]
        i = 1
        for marker in markers:
            size = struct.pack(">H", 2 + ICC_OVERHEAD_LEN + len(marker))
            extra = extra + ("\xFF\xE2" + size + "ICC_PROFILE\0" + chr(i) +
                             chr(len(markers)) + marker)
            i = i + 1

    # get keyword arguments
    im.encoderconfig = (
        info.get("quality", 0),
        # "progressive" is the official name, but older documentation
        # says "progression"
        # FIXME: issue a warning if the wrong form is used (post-1.1.7)
        info.has_key("progressive") or info.has_key("progression"),
        info.get("smooth", 0),
        info.has_key("optimize"),
        info.get("streamtype", 0),
        dpi[0],
        dpi[1],
        subsampling,
        extra,
    )

    ImageFile._save(im, fp, [("jpeg", (0, 0) + im.size, 0, rawmode)])
Пример #8
0
def _save(im, fp, filename):

    try:
        rawmode = RAWMODE[im.mode]
    except KeyError:
        raise IOError("cannot write mode %s as JPEG" % im.mode)

    info = im.encoderinfo

    dpi = info.get("dpi", (0, 0))

    subsampling = info.get("subsampling", -1)
    if subsampling == "4:4:4":
        subsampling = 0
    elif subsampling == "4:2:2":
        subsampling = 1
    elif subsampling == "4:1:1":
        subsampling = 2

    extra = ""

    icc_profile = info.get("icc_profile")
    if icc_profile:
        ICC_OVERHEAD_LEN = 14
        MAX_BYTES_IN_MARKER = 65533
        MAX_DATA_BYTES_IN_MARKER = MAX_BYTES_IN_MARKER - ICC_OVERHEAD_LEN
        markers = []
        while icc_profile:
            markers.append(icc_profile[:MAX_DATA_BYTES_IN_MARKER])
            icc_profile = icc_profile[MAX_DATA_BYTES_IN_MARKER:]
        i = 1
        for marker in markers:
            size = struct.pack(">H", 2 + ICC_OVERHEAD_LEN + len(marker))
            extra = extra + ("\xFF\xE2" + size + "ICC_PROFILE\0" + chr(i) + chr(len(markers)) + marker)
            i = i + 1

    # get keyword arguments
    im.encoderconfig = (
        info.get("quality", 0),
        # "progressive" is the official name, but older documentation
        # says "progression"
        # FIXME: issue a warning if the wrong form is used (post-1.1.7)
        info.has_key("progressive") or info.has_key("progression"),
        info.get("smooth", 0),
        info.has_key("optimize"),
        info.get("streamtype", 0),
        dpi[0],
        dpi[1],
        subsampling,
        extra,
    )

    ImageFile._save(im, fp, [("jpeg", (0, 0) + im.size, 0, rawmode)])
Пример #9
0
def _save(im, fp, filename):
    if im.mode == "1":
        rawmode, head = "1;I", "P4"
    elif im.mode == "L":
        rawmode, head = "L", "P5"
    elif im.mode == "RGB":
        rawmode, head = "RGB", "P6"
    elif im.mode == "RGBA":
        rawmode, head = "RGB", "P6"
    else:
        raise IOError, "cannot write mode %s as PPM" % im.mode
    fp.write(head + "\n%d %d\n" % im.size)
    if head != "P4":
        fp.write("255\n")
    ImageFile._save(im, fp, [("raw", (0, 0) + im.size, 0, (rawmode, 0, 1))])
Пример #10
0
def _save(im, fp, filename):
    if im.mode == "1":
        rawmode, head = "1;I", "P4"
    elif im.mode == "L":
        rawmode, head = "L", "P5"
    elif im.mode == "RGB":
        rawmode, head = "RGB", "P6"
    elif im.mode == "RGBA":
        rawmode, head = "RGB", "P6"
    else:
        raise IOError, "cannot write mode %s as PPM" % im.mode
    fp.write(head + "\n%d %d\n" % im.size)
    if head != "P4":
        fp.write("255\n")
    ImageFile._save(im, fp, [("raw", (0,0)+im.size, 0, (rawmode, 0, 1))])
Пример #11
0
    def chunk_PLTE(self, pos, len):

        # palette
        s = ImageFile._safe_read(self.fp, len)
        if self.im_mode == "P":
            self.im_palette = "RGB", s
        return s
Пример #12
0
    def chunk_PLTE(self, pos, len):

        # palette
        s = ImageFile._safe_read(self.fp, len)
        if self.im_mode == "P":
            self.im_palette = "RGB", s
        return s
Пример #13
0
def _save(im, fp, filename, check=0):

    try:
        rawmode, bits, colors = SAVE[im.mode]
    except KeyError:
        raise IOError("cannot write mode %s as BMP" % im.mode)

    if check:
        return check

    stride = ((im.size[0] * bits + 7) / 8 + 3) & (~3)
    header = 40  # or 64 for OS/2 version 2
    offset = 14 + header + colors * 4
    image = stride * im.size[1]

    # bitmap header
    fp.write("BM" +  # file type (magic)
             o32(offset + image) +  # file size
             o32(0) +  # reserved
             o32(offset))  # image data offset

    # bitmap info header
    fp.write(
        o32(header) +  # info header size
        o32(im.size[0]) +  # width
        o32(im.size[1]) +  # height
        o16(1) +  # planes
        o16(bits) +  # depth
        o32(0) +  # compression (0=uncompressed)
        o32(image) +  # size of bitmap
        o32(1) + o32(1) +  # resolution
        o32(colors) +  # colors used
        o32(colors))  # colors important

    fp.write("\000" * (header - 40))  # padding (for OS/2 format)

    if im.mode == "1":
        for i in (0, 255):
            fp.write(chr(i) * 4)
    elif im.mode == "L":
        for i in range(256):
            fp.write(chr(i) * 4)
    elif im.mode == "P":
        fp.write(im.im.getpalette("RGB", "BGRX"))

    ImageFile._save(im, fp,
                    [("raw", (0, 0) + im.size, 0, (rawmode, stride, -1))])
Пример #14
0
def _save(im, fp, filename, check=0):

    try:
        rawmode, bits, colors = SAVE[im.mode]
    except KeyError:
        raise IOError("cannot write mode %s as BMP" % im.mode)

    if check:
        return check

    stride = ((im.size[0]*bits+7)/8+3)&(~3)
    header = 40 # or 64 for OS/2 version 2
    offset = 14 + header + colors * 4
    image  = stride * im.size[1]

    # bitmap header
    fp.write("BM" +                     # file type (magic)
             o32(offset+image) +        # file size
             o32(0) +                   # reserved
             o32(offset))               # image data offset

    # bitmap info header
    fp.write(o32(header) +              # info header size
             o32(im.size[0]) +          # width
             o32(im.size[1]) +          # height
             o16(1) +                   # planes
             o16(bits) +                # depth
             o32(0) +                   # compression (0=uncompressed)
             o32(image) +               # size of bitmap
             o32(1) + o32(1) +          # resolution
             o32(colors) +              # colors used
             o32(colors))               # colors important

    fp.write("\000" * (header - 40))    # padding (for OS/2 format)

    if im.mode == "1":
        for i in (0, 255):
            fp.write(chr(i) * 4)
    elif im.mode == "L":
        for i in range(256):
            fp.write(chr(i) * 4)
    elif im.mode == "P":
        fp.write(im.im.getpalette("RGB", "BGRX"))

    ImageFile._save(im, fp, [("raw", (0,0)+im.size, 0, (rawmode, stride, -1))])
Пример #15
0
def _save(im, fp, filename):

    if im.mode != "1":
        raise IOError, "cannot write mode %s as XBM" % im.mode

    fp.write("#define im_width %d\n" % im.size[0])
    fp.write("#define im_height %d\n" % im.size[1])

    hotspot = im.encoderinfo.get("hotspot")
    if hotspot:
        fp.write("#define im_x_hot %d\n" % hotspot[0])
        fp.write("#define im_y_hot %d\n" % hotspot[1])

    fp.write("static char im_bits[] = {\n")

    ImageFile._save(im, fp, [("xbm", (0,0)+im.size, 0, None)])

    fp.write("};\n")
Пример #16
0
def _save(im, fp, filename):

    if im.mode != "1":
        raise IOError, "cannot write mode %s as XBM" % im.mode

    fp.write("#define im_width %d\n" % im.size[0])
    fp.write("#define im_height %d\n" % im.size[1])

    hotspot = im.encoderinfo.get("hotspot")
    if hotspot:
        fp.write("#define im_x_hot %d\n" % hotspot[0])
        fp.write("#define im_y_hot %d\n" % hotspot[1])

    fp.write("static char im_bits[] = {\n")

    ImageFile._save(im, fp, [("xbm", (0, 0) + im.size, 0, None)])

    fp.write("};\n")
Пример #17
0
def COM(self, marker):
    #
    # Comment marker.  Store these in the APP dictionary.

    n = i16(self.fp.read(2)) - 2
    s = ImageFile._safe_read(self.fp, n)

    self.app["COM"] = s  # compatibility
    self.applist.append(("COM", s))
Пример #18
0
def COM(self, marker):
    #
    # Comment marker.  Store these in the APP dictionary.

    n = i16(self.fp.read(2)) - 2
    s = ImageFile._safe_read(self.fp, n)

    self.app["COM"] = s  # compatibility
    self.applist.append(("COM", s))
Пример #19
0
def APP(self, marker):
    #
    # Application marker.  Store these in the APP dictionary.
    # Also look for well-known application markers.

    n = i16(self.fp.read(2)) - 2
    s = ImageFile._safe_read(self.fp, n)

    app = "APP%d" % (marker & 15)

    self.app[app] = s  # compatibility
    self.applist.append((app, s))

    if marker == 0xFFE0 and s[:4] == "JFIF":
        # extract JFIF information
        self.info["jfif"] = version = i16(s, 5)  # version
        self.info["jfif_version"] = divmod(version, 256)
        # extract JFIF properties
        try:
            jfif_unit = ord(s[7])
            jfif_density = i16(s, 8), i16(s, 10)
        except:
            pass
        else:
            if jfif_unit == 1:
                self.info["dpi"] = jfif_density
            self.info["jfif_unit"] = jfif_unit
            self.info["jfif_density"] = jfif_density
    elif marker == 0xFFE1 and s[:5] == "Exif\0":
        # extract Exif information (incomplete)
        self.info["exif"] = s  # FIXME: value will change
    elif marker == 0xFFE2 and s[:5] == "FPXR\0":
        # extract FlashPix information (incomplete)
        self.info["flashpix"] = s  # FIXME: value will change
    elif marker == 0xFFE2 and s[:12] == "ICC_PROFILE\0":
        # Since an ICC profile can be larger than the maximum size of
        # a JPEG marker (64K), we need provisions to split it into
        # multiple markers. The format defined by the ICC specifies
        # one or more APP2 markers containing the following data:
        #   Identifying string      ASCII "ICC_PROFILE\0"  (12 bytes)
        #   Marker sequence number  1, 2, etc (1 byte)
        #   Number of markers       Total of APP2's used (1 byte)
        #   Profile data            (remainder of APP2 data)
        # Decoders should use the marker sequence numbers to
        # reassemble the profile, rather than assuming that the APP2
        # markers appear in the correct sequence.
        self.icclist.append(s)
    elif marker == 0xFFEE and s[:5] == "Adobe":
        self.info["adobe"] = i16(s, 5)
        # extract Adobe custom properties
        try:
            adobe_transform = ord(s[1])
        except:
            pass
        else:
            self.info["adobe_transform"] = adobe_transform
Пример #20
0
def APP(self, marker):
    #
    # Application marker.  Store these in the APP dictionary.
    # Also look for well-known application markers.

    n = i16(self.fp.read(2)) - 2
    s = ImageFile._safe_read(self.fp, n)

    app = "APP%d" % (marker & 15)

    self.app[app] = s  # compatibility
    self.applist.append((app, s))

    if marker == 0xFFE0 and s[:4] == "JFIF":
        # extract JFIF information
        self.info["jfif"] = version = i16(s, 5)  # version
        self.info["jfif_version"] = divmod(version, 256)
        # extract JFIF properties
        try:
            jfif_unit = ord(s[7])
            jfif_density = i16(s, 8), i16(s, 10)
        except:
            pass
        else:
            if jfif_unit == 1:
                self.info["dpi"] = jfif_density
            self.info["jfif_unit"] = jfif_unit
            self.info["jfif_density"] = jfif_density
    elif marker == 0xFFE1 and s[:5] == "Exif\0":
        # extract Exif information (incomplete)
        self.info["exif"] = s  # FIXME: value will change
    elif marker == 0xFFE2 and s[:5] == "FPXR\0":
        # extract FlashPix information (incomplete)
        self.info["flashpix"] = s  # FIXME: value will change
    elif marker == 0xFFE2 and s[:12] == "ICC_PROFILE\0":
        # Since an ICC profile can be larger than the maximum size of
        # a JPEG marker (64K), we need provisions to split it into
        # multiple markers. The format defined by the ICC specifies
        # one or more APP2 markers containing the following data:
        #   Identifying string      ASCII "ICC_PROFILE\0"  (12 bytes)
        #   Marker sequence number  1, 2, etc (1 byte)
        #   Number of markers       Total of APP2's used (1 byte)
        #   Profile data            (remainder of APP2 data)
        # Decoders should use the marker sequence numbers to
        # reassemble the profile, rather than assuming that the APP2
        # markers appear in the correct sequence.
        self.icclist.append(s)
    elif marker == 0xFFEE and s[:5] == "Adobe":
        self.info["adobe"] = i16(s, 5)
        # extract Adobe custom properties
        try:
            adobe_transform = ord(s[1])
        except:
            pass
        else:
            self.info["adobe_transform"] = adobe_transform
Пример #21
0
def _save(im, fp, filename):
    if im.mode[0] != "F":
        im = im.convert('F')

    hdr = makeSpiderHeader(im)
    if len(hdr) < 256:
        raise IOError, "Error creating Spider header"

    # write the SPIDER header
    try:
        fp = open(filename, 'wb')
    except:
        raise IOError, "Unable to open %s for writing" % filename
    fp.writelines(hdr)

    rawmode = "F;32NF"  #32-bit native floating point
    ImageFile._save(im, fp, [("raw", (0,0)+im.size, 0, (rawmode,0,1))])

    fp.close()
Пример #22
0
    def load(self, fp):
        # load tag dictionary

        self.reset()

        i16 = self.i16
        i32 = self.i32

        for i in range(i16(fp.read(2))):

            ifd = fp.read(12)

            tag, typ = i16(ifd), i16(ifd, 2)

            if Image.DEBUG:
                import TiffTags
                tagname = TiffTags.TAGS.get(tag, "unknown")
                typname = TiffTags.TYPES.get(typ, "unknown")
                print "tag: %s (%d)" % (tagname, tag),
                print "- type: %s (%d)" % (typname, typ),

            try:
                dispatch = self.load_dispatch[typ]
            except KeyError:
                if Image.DEBUG:
                    print "- unsupported type", typ
                continue # ignore unsupported type

            size, handler = dispatch

            size = size * i32(ifd, 4)

            # Get and expand tag value
            if size > 4:
                here = fp.tell()
                fp.seek(i32(ifd, 8))
                data = ImageFile._safe_read(fp, size)
                fp.seek(here)
            else:
                data = ifd[8:8+size]

            if len(data) != size:
                raise IOError, "not enough data"

            self.tagdata[tag] = typ, data
            self.tagtype[tag] = typ

            if Image.DEBUG:
                if tag in (COLORMAP, IPTC_NAA_CHUNK, PHOTOSHOP_CHUNK, ICCPROFILE, XMP):
                    print "- value: <table: %d bytes>" % size
                else:
                    print "- value:", self[tag]

        self.next = i32(fp.read(4))
Пример #23
0
def _save(im, fp, filename, check=0):

    try:
        version, bits, planes, rawmode = SAVE[im.mode]
    except KeyError:
        raise ValueError, "Cannot save %s images as PCX" % im.mode

    if check:
        return check

    # bytes per plane
    stride = (im.size[0] * bits + 7) / 8

    # under windows, we could determine the current screen size with
    # "Image.core.display_mode()[1]", but I think that's overkill...

    screen = im.size

    dpi = 100, 100

    # PCX header
    fp.write(
        chr(10) + chr(version) + chr(1) + chr(bits) + o16(0) + o16(0) +
        o16(im.size[0] - 1) + o16(im.size[1] - 1) + o16(dpi[0]) + o16(dpi[1]) +
        chr(0) * 24 + chr(255) * 24 + chr(0) + chr(planes) + o16(stride) +
        o16(1) + o16(screen[0]) + o16(screen[1]) + chr(0) * 54)

    assert fp.tell() == 128

    ImageFile._save(im, fp,
                    [("pcx", (0, 0) + im.size, 0, (rawmode, bits * planes))])

    if im.mode == "P":
        # colour palette
        fp.write(chr(12))
        fp.write(im.im.getpalette("RGB", "RGB"))  # 768 bytes
    elif im.mode == "L":
        # greyscale palette
        fp.write(chr(12))
        for i in range(256):
            fp.write(chr(i) * 3)
Пример #24
0
def _save(im, fp, filename, check=0):

    try:
        rawmode, bits, colormaptype, imagetype = SAVE[im.mode]
    except KeyError:
        raise IOError("cannot write mode %s as TGA" % im.mode)

    if check:
        return check

    if colormaptype:
        colormapfirst, colormaplength, colormapentry = 0, 256, 24
    else:
        colormapfirst, colormaplength, colormapentry = 0, 0, 0

    if im.mode == "RGBA":
        flags = 8
    else:
        flags = 0

    orientation = im.info.get("orientation", -1)
    if orientation > 0:
        flags = flags | 0x20

    fp.write("\000" +
             chr(colormaptype) +
             chr(imagetype) +
             o16(colormapfirst) +
             o16(colormaplength) +
             chr(colormapentry) +
             o16(0) +
             o16(0) +
             o16(im.size[0]) +
             o16(im.size[1]) +
             chr(bits) +
             chr(flags))

    if colormaptype:
        fp.write(im.im.getpalette("RGB", "BGR"))

    ImageFile._save(im, fp, [("raw", (0,0)+im.size, 0, (rawmode, 0, orientation))])
Пример #25
0
    def chunk_pHYs(self, pos, len):

        # pixels per unit
        s = ImageFile._safe_read(self.fp, len)
        px, py = i32(s), i32(s[4:])
        unit = ord(s[8])
        if unit == 1:  # meter
            dpi = int(px * 0.0254 + 0.5), int(py * 0.0254 + 0.5)
            self.im_info["dpi"] = dpi
        elif unit == 0:
            self.im_info["aspect"] = px, py
        return s
Пример #26
0
    def chunk_tEXt(self, pos, len):

        # text
        s = ImageFile._safe_read(self.fp, len)
        try:
            k, v = string.split(s, "\0", 1)
        except ValueError:
            k = s
            v = ""  # fallback for broken tEXt tags
        if k:
            self.im_info[k] = self.im_text[k] = v
        return s
Пример #27
0
    def chunk_zTXt(self, pos, len):

        # compressed text
        s = ImageFile._safe_read(self.fp, len)
        k, v = string.split(s, "\0", 1)
        comp_method = ord(v[0])
        if comp_method != 0:
            raise SyntaxError("Unknown compression method %s in zTXt chunk" % comp_method)
        import zlib

        self.im_info[k] = self.im_text[k] = zreqs.decompress(v[1:])
        return s
Пример #28
0
    def chunk_pHYs(self, pos, len):

        # pixels per unit
        s = ImageFile._safe_read(self.fp, len)
        px, py = i32(s), i32(s[4:])
        unit = ord(s[8])
        if unit == 1:  # meter
            dpi = int(px * 0.0254 + 0.5), int(py * 0.0254 + 0.5)
            self.im_info["dpi"] = dpi
        elif unit == 0:
            self.im_info["aspect"] = px, py
        return s
Пример #29
0
    def chunk_tEXt(self, pos, len):

        # text
        s = ImageFile._safe_read(self.fp, len)
        try:
            k, v = string.split(s, "\0", 1)
        except ValueError:
            k = s
            v = ""  # fallback for broken tEXt tags
        if k:
            self.im_info[k] = self.im_text[k] = v
        return s
Пример #30
0
    def chunk_zTXt(self, pos, len):

        # compressed text
        s = ImageFile._safe_read(self.fp, len)
        k, v = string.split(s, "\0", 1)
        comp_method = ord(v[0])
        if comp_method != 0:
            raise SyntaxError("Unknown compression method %s in zTXt chunk" %
                              comp_method)
        import zlib
        self.im_info[k] = self.im_text[k] = zreqs.decompress(v[1:])
        return s
Пример #31
0
    def chunk_tRNS(self, pos, len):

        # transparency
        s = ImageFile._safe_read(self.fp, len)
        if self.im_mode == "P":
            i = string.find(s, chr(0))
            if i >= 0:
                self.im_info["transparency"] = i
        elif self.im_mode == "L":
            self.im_info["transparency"] = i16(s)
        elif self.im_mode == "RGB":
            self.im_info["transparency"] = i16(s), i16(s[2:]), i16(s[4:])
        return s
Пример #32
0
    def chunk_tRNS(self, pos, len):

        # transparency
        s = ImageFile._safe_read(self.fp, len)
        if self.im_mode == "P":
            i = string.find(s, chr(0))
            if i >= 0:
                self.im_info["transparency"] = i
        elif self.im_mode == "L":
            self.im_info["transparency"] = i16(s)
        elif self.im_mode == "RGB":
            self.im_info["transparency"] = i16(s), i16(s[2:]), i16(s[4:])
        return s
Пример #33
0
    def chunk_IHDR(self, pos, len):

        # image header
        s = ImageFile._safe_read(self.fp, len)
        self.im_size = i32(s), i32(s[4:])
        try:
            self.im_mode, self.im_rawmode = _MODES[(ord(s[8]), ord(s[9]))]
        except:
            pass
        if ord(s[12]):
            self.im_info["interlace"] = 1
        if ord(s[11]):
            raise SyntaxError, "unknown filter category"
        return s
Пример #34
0
    def chunk_IHDR(self, pos, len):

        # image header
        s = ImageFile._safe_read(self.fp, len)
        self.im_size = i32(s), i32(s[4:])
        try:
            self.im_mode, self.im_rawmode = _MODES[(ord(s[8]), ord(s[9]))]
        except:
            pass
        if ord(s[12]):
            self.im_info["interlace"] = 1
        if ord(s[11]):
            raise SyntaxError, "unknown filter category"
        return s
Пример #35
0
    def verify(self, endchunk="IEND"):

        # Simple approach; just calculate checksum for all remaining
        # blocks.  Must be called directly after open.

        cids = []

        while 1:
            cid, pos, len = self.read()
            if cid == endchunk:
                break
            self.crc(cid, ImageFile._safe_read(self.fp, len))
            cids.append(cid)

        return cids
Пример #36
0
    def verify(self, endchunk="IEND"):

        # Simple approach; just calculate checksum for all remaining
        # blocks.  Must be called directly after open.

        cids = []

        while 1:
            cid, pos, len = self.read()
            if cid == endchunk:
                break
            self.crc(cid, ImageFile._safe_read(self.fp, len))
            cids.append(cid)

        return cids
Пример #37
0
def SOF(self, marker):
    #
    # Start of frame marker.  Defines the size and mode of the
    # image.  JPEG is colour blind, so we use some simple
    # heuristics to map the number of layers to an appropriate
    # mode.  Note that this could be made a bit brighter, by
    # looking for JFIF and Adobe APP markers.

    n = i16(self.fp.read(2)) - 2
    s = ImageFile._safe_read(self.fp, n)
    self.size = i16(s[3:]), i16(s[1:])

    self.bits = ord(s[0])
    if self.bits != 8:
        raise SyntaxError("cannot handle %d-bit layers" % self.bits)

    self.layers = ord(s[5])
    if self.layers == 1:
        self.mode = "L"
    elif self.layers == 3:
        self.mode = "RGB"
    elif self.layers == 4:
        self.mode = "CMYK"
    else:
        raise SyntaxError("cannot handle %d-layer images" % self.layers)

    if marker in [0xFFC2, 0xFFC6, 0xFFCA, 0xFFCE]:
        self.info["progressive"] = self.info["progression"] = 1

    if self.icclist:
        # fixup icc profile
        self.icclist.sort()  # sort by sequence number
        if ord(self.icclist[0][13]) == len(self.icclist):
            profile = []
            for p in self.icclist:
                profile.append(p[14:])
            icc_profile = string.join(profile, "")
        else:
            icc_profile = None  # wrong number of fragments
        self.info["icc_profile"] = icc_profile
        self.icclist = None

    for i in range(6, len(s), 3):
        t = s[i:i + 3]
        # 4-tuples: id, vsamp, hsamp, qtable
        self.layer.append((t[0], ord(t[1]) / 16, ord(t[1]) & 15, ord(t[2])))
Пример #38
0
    def _open(self):

        if self.fp.read(8) != _MAGIC:
            raise SyntaxError, "not a PNG file"

        #
        # Parse headers up to the first IDAT chunk

        self.png = PngStream(self.fp)

        while 1:

            #
            # get next chunk

            cid, pos, len = self.png.read()

            try:
                s = self.png.call(cid, pos, len)
            except EOFError:
                break
            except AttributeError:
                if Image.DEBUG:
                    print cid, pos, len, "(unknown)"
                s = ImageFile._safe_read(self.fp, len)

            self.png.crc(cid, s)

        #
        # Copy relevant attributes from the PngStream.  An alternative
        # would be to let the PngStream class modify these attributes
        # directly, but that introduces circular references which are
        # difficult to break if things go wrong in the decoder...
        # (believe me, I've tried ;-)

        self.mode = self.png.im_mode
        self.size = self.png.im_size
        self.info = self.png.im_info
        self.text = self.png.im_text  # experimental
        self.tile = self.png.im_tile

        if self.png.im_palette:
            rawmode, data = self.png.im_palette
            self.palette = ImagePalette.raw(rawmode, data)

        self.__idat = len  # used by load_read()
Пример #39
0
def SOF(self, marker):
    #
    # Start of frame marker.  Defines the size and mode of the
    # image.  JPEG is colour blind, so we use some simple
    # heuristics to map the number of layers to an appropriate
    # mode.  Note that this could be made a bit brighter, by
    # looking for JFIF and Adobe APP markers.

    n = i16(self.fp.read(2)) - 2
    s = ImageFile._safe_read(self.fp, n)
    self.size = i16(s[3:]), i16(s[1:])

    self.bits = ord(s[0])
    if self.bits != 8:
        raise SyntaxError("cannot handle %d-bit layers" % self.bits)

    self.layers = ord(s[5])
    if self.layers == 1:
        self.mode = "L"
    elif self.layers == 3:
        self.mode = "RGB"
    elif self.layers == 4:
        self.mode = "CMYK"
    else:
        raise SyntaxError("cannot handle %d-layer images" % self.layers)

    if marker in [0xFFC2, 0xFFC6, 0xFFCA, 0xFFCE]:
        self.info["progressive"] = self.info["progression"] = 1

    if self.icclist:
        # fixup icc profile
        self.icclist.sort()  # sort by sequence number
        if ord(self.icclist[0][13]) == len(self.icclist):
            profile = []
            for p in self.icclist:
                profile.append(p[14:])
            icc_profile = string.join(profile, "")
        else:
            icc_profile = None  # wrong number of fragments
        self.info["icc_profile"] = icc_profile
        self.icclist = None

    for i in range(6, len(s), 3):
        t = s[i : i + 3]
        # 4-tuples: id, vsamp, hsamp, qtable
        self.layer.append((t[0], ord(t[1]) / 16, ord(t[1]) & 15, ord(t[2])))
Пример #40
0
    def _open(self):

        if self.fp.read(8) != _MAGIC:
            raise SyntaxError, "not a PNG file"

        #
        # Parse headers up to the first IDAT chunk

        self.png = PngStream(self.fp)

        while 1:

            #
            # get next chunk

            cid, pos, len = self.png.read()

            try:
                s = self.png.call(cid, pos, len)
            except EOFError:
                break
            except AttributeError:
                if Image.DEBUG:
                    print cid, pos, len, "(unknown)"
                s = ImageFile._safe_read(self.fp, len)

            self.png.crc(cid, s)

        #
        # Copy relevant attributes from the PngStream.  An alternative
        # would be to let the PngStream class modify these attributes
        # directly, but that introduces circular references which are
        # difficult to break if things go wrong in the decoder...
        # (believe me, I've tried ;-)

        self.mode = self.png.im_mode
        self.size = self.png.im_size
        self.info = self.png.im_info
        self.text = self.png.im_text  # experimental
        self.tile = self.png.im_tile

        if self.png.im_palette:
            rawmode, data = self.png.im_palette
            self.palette = ImagePalette.raw(rawmode, data)

        self.__idat = len  # used by load_read()
Пример #41
0
def DQT(self, marker):
    #
    # Define quantization table.  Support baseline 8-bit tables
    # only.  Note that there might be more than one table in
    # each marker.

    # FIXME: The quantization tables can be used to estimate the
    # compression quality.

    n = i16(self.fp.read(2)) - 2
    s = ImageFile._safe_read(self.fp, n)
    while len(s):
        if len(s) < 65:
            raise SyntaxError("bad quantization table marker")
        v = ord(s[0])
        if v / 16 == 0:
            self.quantization[v & 15] = array.array("b", s[1:65])
            s = s[65:]
        else:
            return  # FIXME: add code to read 16-bit tables!
Пример #42
0
def DQT(self, marker):
    #
    # Define quantization table.  Support baseline 8-bit tables
    # only.  Note that there might be more than one table in
    # each marker.

    # FIXME: The quantization tables can be used to estimate the
    # compression quality.

    n = i16(self.fp.read(2)) - 2
    s = ImageFile._safe_read(self.fp, n)
    while len(s):
        if len(s) < 65:
            raise SyntaxError("bad quantization table marker")
        v = ord(s[0])
        if v / 16 == 0:
            self.quantization[v & 15] = array.array("b", s[1:65])
            s = s[65:]
        else:
            return  # FIXME: add code to read 16-bit tables!
Пример #43
0
    def chunk_iCCP(self, pos, len):

        # ICC profile
        s = ImageFile._safe_read(self.fp, len)
        # according to PNG spec, the iCCP chunk contains:
        # Profile name  1-79 bytes (character string)
        # Null separator        1 byte (null character)
        # Compression method    1 byte (0)
        # Compressed profile    n bytes (zlib with deflate compression)
        i = string.find(s, chr(0))
        if Image.DEBUG:
            print "iCCP profile name", s[:i]
            print "Compression method", ord(s[i])
        comp_method = ord(s[i])
        if comp_method != 0:
            raise SyntaxError("Unknown compression method %s in iCCP chunk" % comp_method)
        try:
            icc_profile = zreqs.decompress(s[i + 2 :])
        except zreqs.error:
            icc_profile = None  # FIXME
        self.im_info["icc_profile"] = icc_profile
        return s
Пример #44
0
    def chunk_iCCP(self, pos, len):

        # ICC profile
        s = ImageFile._safe_read(self.fp, len)
        # according to PNG spec, the iCCP chunk contains:
        # Profile name  1-79 bytes (character string)
        # Null separator        1 byte (null character)
        # Compression method    1 byte (0)
        # Compressed profile    n bytes (zlib with deflate compression)
        i = string.find(s, chr(0))
        if Image.DEBUG:
            print "iCCP profile name", s[:i]
            print "Compression method", ord(s[i])
        comp_method = ord(s[i])
        if comp_method != 0:
            raise SyntaxError("Unknown compression method %s in iCCP chunk" %
                              comp_method)
        try:
            icc_profile = zreqs.decompress(s[i + 2:])
        except zreqs.error:
            icc_profile = None  # FIXME
        self.im_info["icc_profile"] = icc_profile
        return s
Пример #45
0
def _save(im, fp, filename):

    try:
        rawmode, prefix, photo, format, bits, extra = SAVE_INFO[im.mode]
    except KeyError:
        raise IOError, "cannot write mode %s as TIFF" % im.mode

    ifd = ImageFileDirectory(prefix)

    # -- multi-page -- skip TIFF header on subsequent pages
    if fp.tell() == 0:
        # tiff header (write via IFD to get everything right)
        # PIL always starts the first IFD at offset 8
        fp.write(ifd.prefix + ifd.o16(42) + ifd.o32(8))

    ifd[IMAGEWIDTH] = im.size[0]
    ifd[IMAGELENGTH] = im.size[1]

    # additions written by Greg Couch, [email protected]
    # inspired by image-sig posting from Kevin Cazabon, [email protected]
    if hasattr(im, 'tag'):
        # preserve tags from original TIFF image file
        for key in (RESOLUTION_UNIT, X_RESOLUTION, Y_RESOLUTION):
            if im.tag.tagdata.has_key(key):
                ifd[key] = im.tag.tagdata.get(key)
        # preserve some more tags from original TIFF image file
        # -- 2008-06-06 Florian Hoech
        ifd.tagtype = im.tag.tagtype
        for key in (IPTC_NAA_CHUNK, PHOTOSHOP_CHUNK, XMP):
            if im.tag.has_key(key):
                ifd[key] = im.tag[key]
        # preserve ICC profile (should also work when saving other formats
        # which support profiles as TIFF) -- 2008-06-06 Florian Hoech
        if im.info.has_key("icc_profile"):
            ifd[ICCPROFILE] = im.info["icc_profile"]
    if im.encoderinfo.has_key("description"):
        ifd[IMAGEDESCRIPTION] = im.encoderinfo["description"]
    if im.encoderinfo.has_key("resolution"):
        ifd[X_RESOLUTION] = ifd[Y_RESOLUTION] \
                                = _cvt_res(im.encoderinfo["resolution"])
    if im.encoderinfo.has_key("x resolution"):
        ifd[X_RESOLUTION] = _cvt_res(im.encoderinfo["x resolution"])
    if im.encoderinfo.has_key("y resolution"):
        ifd[Y_RESOLUTION] = _cvt_res(im.encoderinfo["y resolution"])
    if im.encoderinfo.has_key("resolution unit"):
        unit = im.encoderinfo["resolution unit"]
        if unit == "inch":
            ifd[RESOLUTION_UNIT] = 2
        elif unit == "cm" or unit == "centimeter":
            ifd[RESOLUTION_UNIT] = 3
        else:
            ifd[RESOLUTION_UNIT] = 1
    if im.encoderinfo.has_key("software"):
        ifd[SOFTWARE] = im.encoderinfo["software"]
    if im.encoderinfo.has_key("date time"):
        ifd[DATE_TIME] = im.encoderinfo["date time"]
    if im.encoderinfo.has_key("artist"):
        ifd[ARTIST] = im.encoderinfo["artist"]
    if im.encoderinfo.has_key("copyright"):
        ifd[COPYRIGHT] = im.encoderinfo["copyright"]

    dpi = im.encoderinfo.get("dpi")
    if dpi:
        ifd[RESOLUTION_UNIT] = 2
        ifd[X_RESOLUTION] = _cvt_res(dpi[0])
        ifd[Y_RESOLUTION] = _cvt_res(dpi[1])

    if bits != (1,):
        ifd[BITSPERSAMPLE] = bits
        if len(bits) != 1:
            ifd[SAMPLESPERPIXEL] = len(bits)
    if extra is not None:
        ifd[EXTRASAMPLES] = extra
    if format != 1:
        ifd[SAMPLEFORMAT] = format

    ifd[PHOTOMETRIC_INTERPRETATION] = photo

    if im.mode == "P":
        lut = im.im.getpalette("RGB", "RGB;L")
        ifd[COLORMAP] = tuple(map(lambda v: ord(v) * 256, lut))

    # data orientation
    stride = len(bits) * ((im.size[0]*bits[0]+7)/8)
    ifd[ROWSPERSTRIP] = im.size[1]
    ifd[STRIPBYTECOUNTS] = stride * im.size[1]
    ifd[STRIPOFFSETS] = 0 # this is adjusted by IFD writer
    ifd[COMPRESSION] = 1 # no compression

    offset = ifd.save(fp)

    ImageFile._save(im, fp, [
        ("raw", (0,0)+im.size, offset, (rawmode, stride, 1))
        ])


    # -- helper for multi-page save --
    if im.encoderinfo.has_key("_debug_multipage"):
        #just to access o32 and o16 (using correct byte order)
        im._debug_multipage = ifd
Пример #46
0
def _save(im, fp, filename, chunk=putchunk, check=0):
    # save an image to disk (called by the save method)

    mode = im.mode

    if mode == "P":

        #
        # attempt to minimize storage requirements for palette images

        if im.encoderinfo.has_key("bits"):

            # number of bits specified by user
            n = 1 << im.encoderinfo["bits"]

        else:

            # check palette contents
            n = 256  # FIXME

        if n <= 2:
            bits = 1
        elif n <= 4:
            bits = 2
        elif n <= 16:
            bits = 4
        else:
            bits = 8

        if bits != 8:
            mode = "%s;%d" % (mode, bits)

    # encoder options
    if im.encoderinfo.has_key("dictionary"):
        dictionary = im.encoderinfo["dictionary"]
    else:
        dictionary = ""

    im.encoderconfig = (im.encoderinfo.has_key("optimize"), dictionary)

    # get the corresponding PNG mode
    try:
        rawmode, mode = _OUTMODES[mode]
    except KeyError:
        raise IOError, "cannot write mode %s as PNG" % mode

    if check:
        return check

    #
    # write minimal PNG file

    fp.write(_MAGIC)

    chunk(
        fp,
        "IHDR",
        o32(im.size[0]),
        o32(im.size[1]),  #  0: size
        mode,  #  8: depth/type
        chr(0),  # 10: compression
        chr(0),  # 11: filter category
        chr(0),
    )  # 12: interlace flag

    if im.mode == "P":
        chunk(fp, "PLTE", im.im.getpalette("RGB"))

    if im.encoderinfo.has_key("transparency"):
        if im.mode == "P":
            transparency = max(0, min(255, im.encoderinfo["transparency"]))
            chunk(fp, "tRNS", chr(255) * transparency + chr(0))
        elif im.mode == "L":
            transparency = max(0, min(65535, im.encoderinfo["transparency"]))
            chunk(fp, "tRNS", o16(transparency))
        elif im.mode == "RGB":
            red, green, blue = im.encoderinfo["transparency"]
            chunk(fp, "tRNS", o16(red) + o16(green) + o16(blue))
        else:
            raise IOError("cannot use transparency for this mode")

    if 0:
        # FIXME: to be supported some day
        chunk(fp, "gAMA", o32(int(gamma * 100000.0)))

    dpi = im.encoderinfo.get("dpi")
    if dpi:
        chunk(fp, "pHYs", o32(int(dpi[0] / 0.0254 + 0.5)), o32(int(dpi[1] / 0.0254 + 0.5)), chr(1))

    info = im.encoderinfo.get("pnginfo")
    if info:
        for cid, data in info.chunks:
            chunk(fp, cid, data)

    # ICC profile writing support -- 2008-06-06 Florian Hoech
    if im.info.has_key("icc_profile"):
        # ICC profile
        # according to PNG spec, the iCCP chunk contains:
        # Profile name  1-79 bytes (character string)
        # Null separator        1 byte (null character)
        # Compression method    1 byte (0)
        # Compressed profile    n bytes (zlib with deflate compression)
        try:
            import ICCProfile

            p = ICCProfile.ICCProfile(im.info["icc_profile"])
            name = p.tags.desc.get(
                "ASCII",
                p.tags.desc.get(
                    "Unicode", p.tags.desc.get("Macintosh", p.tags.desc.get("en", {}).get("US", "ICC Profile"))
                ),
            ).encode("latin1", "replace")[:79]
        except ImportError:
            name = "ICC Profile"
        data = name + "\0\0" + zreqs.compress(im.info["icc_profile"])
        chunk(fp, "iCCP", data)

    ImageFile._save(im, _idat(fp, chunk), [("zip", (0, 0) + im.size, 0, rawmode)])

    chunk(fp, "IEND", "")

    try:
        fp.flush()
    except:
        pass
Пример #47
0
    def _bitmap(self, header = 0, offset = 0):

        if header:
            self.fp.seek(header)

        read = self.fp.read

        # CORE/INFO
        s = read(4)
        s = s + ImageFile._safe_read(self.fp, i32(s)-4)

        if len(s) == 12:

            # OS/2 1.0 CORE
            bits = i16(s[10:])
            self.size = i16(s[4:]), i16(s[6:])
            compression = 0
            lutsize = 3
            colors = 0
            direction = -1

        elif len(s) in [40, 64]:

            # WIN 3.1 or OS/2 2.0 INFO
            bits = i16(s[14:])
            self.size = i32(s[4:]), i32(s[8:])
            compression = i32(s[16:])
            lutsize = 4
            colors = i32(s[32:])
            direction = -1
            if s[11] == '\xff':
                # upside-down storage
                self.size = self.size[0], 2**32 - self.size[1]
                direction = 0

        else:
            raise IOError("Unsupported BMP header type (%d)" % len(s))

        if not colors:
            colors = 1 << bits

        # MODE
        try:
            self.mode, rawmode = BIT2MODE[bits]
        except KeyError:
            raise IOError("Unsupported BMP pixel depth (%d)" % bits)

        if compression == 3:
            # BI_BITFIELDS compression
            mask = i32(read(4)), i32(read(4)), i32(read(4))
            if bits == 32 and mask == (0xff0000, 0x00ff00, 0x0000ff):
                rawmode = "BGRX"
            elif bits == 16 and mask == (0x00f800, 0x0007e0, 0x00001f):
                rawmode = "BGR;16"
            elif bits == 16 and mask == (0x007c00, 0x0003e0, 0x00001f):
                rawmode = "BGR;15"
            else:
                # print bits, map(hex, mask)
                raise IOError("Unsupported BMP bitfields layout")
        elif compression != 0:
            raise IOError("Unsupported BMP compression (%d)" % compression)

        # LUT
        if self.mode == "P":
            palette = []
            greyscale = 1
            if colors == 2:
                indices = (0, 255)
            else:
                indices = range(colors)
            for i in indices:
                rgb = read(lutsize)[:3]
                if rgb != chr(i)*3:
                    greyscale = 0
                palette.append(rgb)
            if greyscale:
                if colors == 2:
                    self.mode = rawmode = "1"
                else:
                    self.mode = rawmode = "L"
            else:
                self.mode = "P"
                self.palette = ImagePalette.raw(
                    "BGR", string.join(palette, "")
                    )

        if not offset:
            offset = self.fp.tell()

        self.tile = [("raw",
                     (0, 0) + self.size,
                     offset,
                     (rawmode, ((self.size[0]*bits+31)>>3)&(~3), direction))]

        self.info["compression"] = compression
Пример #48
0
    def chunk_gAMA(self, pos, len):

        # gamma setting
        s = ImageFile._safe_read(self.fp, len)
        self.im_info["gamma"] = i32(s) / 100000.0
        return s
Пример #49
0
def _save(im, fp, filename, check=0):

    if im.mode == "P":

        # we assume this is a color Palm image with the standard colormap,
        # unless the "info" dict has a "custom-colormap" field

        rawmode = "P"
        bpp = 8
        version = 1

    elif im.mode == "L" and im.encoderinfo.has_key("bpp") and im.encoderinfo["bpp"] in (1, 2, 4):

        # this is 8-bit grayscale, so we shift it to get the high-order bits, and invert it because
        # Palm does greyscale from white (0) to black (1)
        bpp = im.encoderinfo["bpp"]
        im = im.point(lambda x, shift=8-bpp, maxval=(1 << bpp)-1: maxval - (x >> shift))
        # we ignore the palette here
        im.mode = "P"
        rawmode = "P;" + str(bpp)
        version = 1

    elif im.mode == "L" and im.info.has_key("bpp") and im.info["bpp"] in (1, 2, 4):

        # here we assume that even though the inherent mode is 8-bit grayscale, only
        # the lower bpp bits are significant.  We invert them to match the Palm.
        bpp = im.info["bpp"]
        im = im.point(lambda x, maxval=(1 << bpp)-1: maxval - (x & maxval))
        # we ignore the palette here
        im.mode = "P"
        rawmode = "P;" + str(bpp)
        version = 1

    elif im.mode == "1":

        # monochrome -- write it inverted, as is the Palm standard
        rawmode = "1;I"
        bpp = 1
        version = 0

    else:

        raise IOError, "cannot write mode %s as Palm" % im.mode

    if check:
        return check

    #
    # make sure image data is available
    im.load()

    # write header

    cols = im.size[0]
    rows = im.size[1]

    rowbytes = ((cols + (16/bpp - 1)) / (16 / bpp)) * 2;
    transparent_index = 0
    compression_type = _COMPRESSION_TYPES["none"]

    flags = 0;
    if im.mode == "P" and im.info.has_key("custom-colormap"):
        flags = flags & _FLAGS["custom-colormap"]
        colormapsize = 4 * 256 + 2;
        colormapmode = im.palette.mode
        colormap = im.getdata().getpalette()
    else:
        colormapsize = 0

    if im.info.has_key("offset"):
        offset = (rowbytes * rows + 16 + 3 + colormapsize) / 4;
    else:
        offset = 0

    fp.write(o16b(cols) + o16b(rows) + o16b(rowbytes) + o16b(flags))
    fp.write(chr(bpp))
    fp.write(chr(version))
    fp.write(o16b(offset))
    fp.write(chr(transparent_index))
    fp.write(chr(compression_type))
    fp.write(o16b(0))   # reserved by Palm

    # now write colormap if necessary

    if colormapsize > 0:
        fp.write(o16b(256))
        for i in range(256):
            fp.write(chr(i))
            if colormapmode == 'RGB':
                fp.write(chr(colormap[3 * i]) + chr(colormap[3 * i + 1]) + chr(colormap[3 * i + 2]))
            elif colormapmode == 'RGBA':
                fp.write(chr(colormap[4 * i]) + chr(colormap[4 * i + 1]) + chr(colormap[4 * i + 2]))

    # now convert data to raw form
    ImageFile._save(im, fp, [("raw", (0,0)+im.size, 0, (rawmode, rowbytes, 1))])

    fp.flush()
Пример #50
0
def _save(im, fp, filename):
    resolution = im.encoderinfo.get("resolution", 72.0)

    #
    # make sure image data is available
    im.load()

    xref = [0] * (5 + 1)  # placeholders

    fp.write("%PDF-1.2\n")
    fp.write("% created by PIL PDF driver " + __version__ + "\n")

    #
    # Get image characteristics

    width, height = im.size

    # FIXME: Should replace ASCIIHexDecode with RunLengthDecode (packbits)
    # or LZWDecode (tiff/lzw compression).  Note that PDF 1.2 also supports
    # Flatedecode (zip compression).

    bits = 8
    params = None

    if im.mode == "1":
        filter = "/ASCIIHexDecode"
        colorspace = "/DeviceGray"
        procset = "/ImageB"  # grayscale
        bits = 1
    elif im.mode == "L":
        filter = "/DCTDecode"
        # params = "<< /Predictor 15 /Columns %d >>" % (width-2)
        colorspace = "/DeviceGray"
        procset = "/ImageB"  # grayscale
    elif im.mode == "P":
        filter = "/ASCIIHexDecode"
        colorspace = "[ /Indexed /DeviceRGB 255 <"
        palette = im.im.getpalette("RGB")
        for i in range(256):
            r = ord(palette[i * 3])
            g = ord(palette[i * 3 + 1])
            b = ord(palette[i * 3 + 2])
            colorspace = colorspace + "%02x%02x%02x " % (r, g, b)
        colorspace = colorspace + "> ]"
        procset = "/ImageI"  # indexed color
    elif im.mode == "RGB":
        filter = "/DCTDecode"
        colorspace = "/DeviceRGB"
        procset = "/ImageC"  # color images
    elif im.mode == "CMYK":
        filter = "/DCTDecode"
        colorspace = "/DeviceCMYK"
        procset = "/ImageC"  # color images
    else:
        raise ValueError("cannot save mode %s" % im.mode)

    #
    # catalogue

    xref[1] = fp.tell()
    _obj(fp, 1, Type="/Catalog", Pages="2 0 R")
    _endobj(fp)

    #
    # pages

    xref[2] = fp.tell()
    _obj(fp, 2, Type="/Pages", Count=1, Kids="[4 0 R]")
    _endobj(fp)

    #
    # image

    op = StringIO.StringIO()

    if filter == "/ASCIIHexDecode":
        if bits == 1:
            # FIXME: the hex encoder doesn't support packed 1-bit
            # images; do things the hard way...
            data = im.tostring("raw", "1")
            im = Image.new("L", (len(data), 1), None)
            im.putdata(data)
        ImageFile._save(im, op, [("hex", (0, 0) + im.size, 0, im.mode)])
    elif filter == "/DCTDecode":
        ImageFile._save(im, op, [("jpeg", (0, 0) + im.size, 0, im.mode)])
    elif filter == "/FlateDecode":
        ImageFile._save(im, op, [("zip", (0, 0) + im.size, 0, im.mode)])
    elif filter == "/RunLengthDecode":
        ImageFile._save(im, op, [("packbits", (0, 0) + im.size, 0, im.mode)])
    else:
        raise ValueError("unsupported PDF filter (%s)" % filter)

    xref[3] = fp.tell()
    _obj(
        fp,
        3,
        Type="/XObject",
        Subtype="/Image",
        Width=width,  # * 72.0 / resolution,
        Height=height,  # * 72.0 / resolution,
        Length=len(op.getvalue()),
        Filter=filter,
        BitsPerComponent=bits,
        DecodeParams=params,
        ColorSpace=colorspace)

    fp.write("stream\n")
    fp.write(op.getvalue())
    fp.write("\nendstream\n")

    _endobj(fp)

    #
    # page

    xref[4] = fp.tell()
    _obj(fp, 4)
    fp.write("<<\n/Type /Page\n/Parent 2 0 R\n"\
             "/Resources <<\n/ProcSet [ /PDF %s ]\n"\
             "/XObject << /image 3 0 R >>\n>>\n"\
             "/MediaBox [ 0 0 %d %d ]\n/Contents 5 0 R\n>>\n" %\
             (procset, int(width * 72.0 /resolution) , int(height * 72.0 / resolution)))
    _endobj(fp)

    #
    # page contents

    op = StringIO.StringIO()

    op.write("q %d 0 0 %d 0 0 cm /image Do Q\n" %
             (int(width * 72.0 / resolution), int(height * 72.0 / resolution)))

    xref[5] = fp.tell()
    _obj(fp, 5, Length=len(op.getvalue()))

    fp.write("stream\n")
    fp.write(op.getvalue())
    fp.write("\nendstream\n")

    _endobj(fp)

    #
    # trailer
    startxref = fp.tell()
    fp.write("xref\n0 %d\n0000000000 65535 f \n" % len(xref))
    for x in xref[1:]:
        fp.write("%010d 00000 n \n" % x)
    fp.write("trailer\n<<\n/Size %d\n/Root 1 0 R\n>>\n" % len(xref))
    fp.write("startxref\n%d\n%%%%EOF\n" % startxref)
    fp.flush()
Пример #51
0
def _save(im, fp, filename):
    resolution = im.encoderinfo.get("resolution", 72.0)

    #
    # make sure image data is available
    im.load()

    xref = [0] * (5 + 1)  # placeholders

    fp.write("%PDF-1.2\n")
    fp.write("% created by PIL PDF driver " + __version__ + "\n")

    #
    # Get image characteristics

    width, height = im.size

    # FIXME: Should replace ASCIIHexDecode with RunLengthDecode (packbits)
    # or LZWDecode (tiff/lzw compression).  Note that PDF 1.2 also supports
    # Flatedecode (zip compression).

    bits = 8
    params = None

    if im.mode == "1":
        filter = "/ASCIIHexDecode"
        colorspace = "/DeviceGray"
        procset = "/ImageB"  # grayscale
        bits = 1
    elif im.mode == "L":
        filter = "/DCTDecode"
        # params = "<< /Predictor 15 /Columns %d >>" % (width-2)
        colorspace = "/DeviceGray"
        procset = "/ImageB"  # grayscale
    elif im.mode == "P":
        filter = "/ASCIIHexDecode"
        colorspace = "[ /Indexed /DeviceRGB 255 <"
        palette = im.im.getpalette("RGB")
        for i in range(256):
            r = ord(palette[i * 3])
            g = ord(palette[i * 3 + 1])
            b = ord(palette[i * 3 + 2])
            colorspace = colorspace + "%02x%02x%02x " % (r, g, b)
        colorspace = colorspace + "> ]"
        procset = "/ImageI"  # indexed color
    elif im.mode == "RGB":
        filter = "/DCTDecode"
        colorspace = "/DeviceRGB"
        procset = "/ImageC"  # color images
    elif im.mode == "CMYK":
        filter = "/DCTDecode"
        colorspace = "/DeviceCMYK"
        procset = "/ImageC"  # color images
    else:
        raise ValueError("cannot save mode %s" % im.mode)

    #
    # catalogue

    xref[1] = fp.tell()
    _obj(fp, 1, Type="/Catalog", Pages="2 0 R")
    _endobj(fp)

    #
    # pages

    xref[2] = fp.tell()
    _obj(fp, 2, Type="/Pages", Count=1, Kids="[4 0 R]")
    _endobj(fp)

    #
    # image

    op = StringIO.StringIO()

    if filter == "/ASCIIHexDecode":
        if bits == 1:
            # FIXME: the hex encoder doesn't support packed 1-bit
            # images; do things the hard way...
            data = im.tostring("raw", "1")
            im = Image.new("L", (len(data), 1), None)
            im.putdata(data)
        ImageFile._save(im, op, [("hex", (0, 0) + im.size, 0, im.mode)])
    elif filter == "/DCTDecode":
        ImageFile._save(im, op, [("jpeg", (0, 0) + im.size, 0, im.mode)])
    elif filter == "/FlateDecode":
        ImageFile._save(im, op, [("zip", (0, 0) + im.size, 0, im.mode)])
    elif filter == "/RunLengthDecode":
        ImageFile._save(im, op, [("packbits", (0, 0) + im.size, 0, im.mode)])
    else:
        raise ValueError("unsupported PDF filter (%s)" % filter)

    xref[3] = fp.tell()
    _obj(
        fp,
        3,
        Type="/XObject",
        Subtype="/Image",
        Width=width,  # * 72.0 / resolution,
        Height=height,  # * 72.0 / resolution,
        Length=len(op.getvalue()),
        Filter=filter,
        BitsPerComponent=bits,
        DecodeParams=params,
        ColorSpace=colorspace,
    )

    fp.write("stream\n")
    fp.write(op.getvalue())
    fp.write("\nendstream\n")

    _endobj(fp)

    #
    # page

    xref[4] = fp.tell()
    _obj(fp, 4)
    fp.write(
        "<<\n/Type /Page\n/Parent 2 0 R\n"
        "/Resources <<\n/ProcSet [ /PDF %s ]\n"
        "/XObject << /image 3 0 R >>\n>>\n"
        "/MediaBox [ 0 0 %d %d ]\n/Contents 5 0 R\n>>\n"
        % (procset, int(width * 72.0 / resolution), int(height * 72.0 / resolution))
    )
    _endobj(fp)

    #
    # page contents

    op = StringIO.StringIO()

    op.write("q %d 0 0 %d 0 0 cm /image Do Q\n" % (int(width * 72.0 / resolution), int(height * 72.0 / resolution)))

    xref[5] = fp.tell()
    _obj(fp, 5, Length=len(op.getvalue()))

    fp.write("stream\n")
    fp.write(op.getvalue())
    fp.write("\nendstream\n")

    _endobj(fp)

    #
    # trailer
    startxref = fp.tell()
    fp.write("xref\n0 %d\n0000000000 65535 f \n" % len(xref))
    for x in xref[1:]:
        fp.write("%010d 00000 n \n" % x)
    fp.write("trailer\n<<\n/Size %d\n/Root 1 0 R\n>>\n" % len(xref))
    fp.write("startxref\n%d\n%%%%EOF\n" % startxref)
    fp.flush()
Пример #52
0
def Skip(self, marker):
    n = i16(self.fp.read(2)) - 2
    ImageFile._safe_read(self.fp, n)
Пример #53
0
def _save(im, fp, filename):

    if _imaging_gif:
        # call external driver
        try:
            _imaging_gif.save(im, fp, filename)
            return
        except IOError:
            pass # write uncompressed file

    try:
        rawmode = RAWMODE[im.mode]
        imOut = im
    except KeyError:
        # convert on the fly (EXPERIMENTAL -- I'm not sure PIL
        # should automatically convert images on save...)
        if Image.getmodebase(im.mode) == "RGB":
            imOut = im.convert("P")
            rawmode = "P"
        else:
            imOut = im.convert("L")
            rawmode = "L"

    # header
    for s in getheader(imOut, im.encoderinfo):
        fp.write(s)

    flags = 0

    try:
        interlace = im.encoderinfo["interlace"]
    except KeyError:
        interlace = 1

    # workaround for @PIL153
    if min(im.size) < 16:
        interlace = 0

    if interlace:
        flags = flags | 64

    try:
        transparency = im.encoderinfo["transparency"]
    except KeyError:
        pass
    else:
        # transparency extension block
        fp.write("!" +
                 chr(249) +             # extension intro
                 chr(4) +               # length
                 chr(1) +               # transparency info present
                 o16(0) +               # duration
                 chr(int(transparency)) # transparency index
                 + chr(0))

    # local image header
    fp.write("," +
             o16(0) + o16(0) +          # bounding box
             o16(im.size[0]) +          # size
             o16(im.size[1]) +
             chr(flags) +               # flags
             chr(8))                    # bits

    imOut.encoderconfig = (8, interlace)

    ImageFile._save(imOut, fp, [("gif", (0,0)+im.size, 0, rawmode)])

    fp.write("\0") # end of image data

    fp.write(";") # end of file

    try:
        fp.flush()
    except: pass
Пример #54
0
def _save(im, fp, filename, chunk=putchunk, check=0):
    # save an image to disk (called by the save method)

    mode = im.mode

    if mode == "P":

        #
        # attempt to minimize storage requirements for palette images

        if im.encoderinfo.has_key("bits"):

            # number of bits specified by user
            n = 1 << im.encoderinfo["bits"]

        else:

            # check palette contents
            n = 256  # FIXME

        if n <= 2:
            bits = 1
        elif n <= 4:
            bits = 2
        elif n <= 16:
            bits = 4
        else:
            bits = 8

        if bits != 8:
            mode = "%s;%d" % (mode, bits)

    # encoder options
    if im.encoderinfo.has_key("dictionary"):
        dictionary = im.encoderinfo["dictionary"]
    else:
        dictionary = ""

    im.encoderconfig = (im.encoderinfo.has_key("optimize"), dictionary)

    # get the corresponding PNG mode
    try:
        rawmode, mode = _OUTMODES[mode]
    except KeyError:
        raise IOError, "cannot write mode %s as PNG" % mode

    if check:
        return check

    #
    # write minimal PNG file

    fp.write(_MAGIC)

    chunk(
        fp,
        "IHDR",
        o32(im.size[0]),
        o32(im.size[1]),  #  0: size
        mode,  #  8: depth/type
        chr(0),  # 10: compression
        chr(0),  # 11: filter category
        chr(0))  # 12: interlace flag

    if im.mode == "P":
        chunk(fp, "PLTE", im.im.getpalette("RGB"))

    if im.encoderinfo.has_key("transparency"):
        if im.mode == "P":
            transparency = max(0, min(255, im.encoderinfo["transparency"]))
            chunk(fp, "tRNS", chr(255) * transparency + chr(0))
        elif im.mode == "L":
            transparency = max(0, min(65535, im.encoderinfo["transparency"]))
            chunk(fp, "tRNS", o16(transparency))
        elif im.mode == "RGB":
            red, green, blue = im.encoderinfo["transparency"]
            chunk(fp, "tRNS", o16(red) + o16(green) + o16(blue))
        else:
            raise IOError("cannot use transparency for this mode")

    if 0:
        # FIXME: to be supported some day
        chunk(fp, "gAMA", o32(int(gamma * 100000.0)))

    dpi = im.encoderinfo.get("dpi")
    if dpi:
        chunk(fp, "pHYs", o32(int(dpi[0] / 0.0254 + 0.5)),
              o32(int(dpi[1] / 0.0254 + 0.5)), chr(1))

    info = im.encoderinfo.get("pnginfo")
    if info:
        for cid, data in info.chunks:
            chunk(fp, cid, data)

    # ICC profile writing support -- 2008-06-06 Florian Hoech
    if im.info.has_key("icc_profile"):
        # ICC profile
        # according to PNG spec, the iCCP chunk contains:
        # Profile name  1-79 bytes (character string)
        # Null separator        1 byte (null character)
        # Compression method    1 byte (0)
        # Compressed profile    n bytes (zlib with deflate compression)
        try:
            import ICCProfile
            p = ICCProfile.ICCProfile(im.info["icc_profile"])
            name = p.tags.desc.get(
                "ASCII",
                p.tags.desc.get(
                    "Unicode",
                    p.tags.desc.get(
                        "Macintosh",
                        p.tags.desc.get("en",
                                        {}).get("US", "ICC Profile")))).encode(
                                            "latin1", "replace")[:79]
        except ImportError:
            name = "ICC Profile"
        data = name + "\0\0" + zreqs.compress(im.info["icc_profile"])
        chunk(fp, "iCCP", data)

    ImageFile._save(im, _idat(fp, chunk),
                    [("zip", (0, 0) + im.size, 0, rawmode)])

    chunk(fp, "IEND", "")

    try:
        fp.flush()
    except:
        pass
Пример #55
0
    def chunk_gAMA(self, pos, len):

        # gamma setting
        s = ImageFile._safe_read(self.fp, len)
        self.im_info["gamma"] = i32(s) / 100000.0
        return s