Пример #1
0
    def resample(self, weights):

        #  print "-------------"
        # Normalize weights
        weights /= weights.sum()
        #  print "weights"
        #  print weights

        N_eff = self.pc
        if weights.sum() == 0.:
            rospy.loginfo("All weights zero!")
        else:
            N_eff = 1 / np.sum(np.square(weights))

        #  print "N_eff ", N_eff
        print "Missed meas ", self.miss_meas
        print "Neff ", N_eff
        if self.miss_meas < self.pc / 2.:
            self.stats.publish(np.float32(N_eff))

        # Resampling?
        if N_eff < self.pc / 2. and self.miss_meas < self.pc / 2.:
            indices = residual_resample(weights)
            print "Resampling "
            print indices
            keep = list(set(indices))
            lost = [i for i in range(self.pc) if i not in keep]
            dupes = indices[:].tolist()
            for i in keep:
                dupes.remove(i)

            self.reassign_poses(lost, dupes)
            # Add noise to particles
            for i in range(self.pc):
                self.particles[i].add_noise(self.res_noise_cov)
Пример #2
0
    def resample(self, weights):
        # Normalize weights
        weights /= weights.sum()
        N_eff = self.pc

        if weights.sum() == 0.:
            rospy.loginfo("All weights zero!")
        else:
            N_eff = 1 / np.sum(np.square(weights))

        self.n_eff_mask.pop(0)
        self.n_eff_mask.append(N_eff)
        self.n_eff_filt = self.moving_average(self.n_eff_mask, 3)
        # print ("N_eff ", N_eff)
        # print('n_eff_filt ', self.n_eff_filt)
        # print ("Missed meas ", self.miss_meas)

        # Resampling?
        # if self.n_eff_filt < self.pc/2. and self.miss_meas <= self.pc/2.:
        print('n_eff ', N_eff)
        print("Weights ")
        print(weights)
        if N_eff < self.pc / 2. and self.miss_meas <= self.pc / 2.:
            self.time2resample = False
            self.ctr = 0
            rospy.loginfo('resampling')
            print("Missed meas ", self.miss_meas)
            indices = residual_resample(weights)
            keep = list(set(indices))
            lost = [i for i in range(self.pc) if i not in keep]
            dupes = indices[:].tolist()
            for i in keep:
                dupes.remove(i)

            self.reassign_poses(lost, dupes)
def pf_step_negbin(y, x, params, W, resample=True):
    """
    One step (measurement) of the particle filter, NegBin obs. model
    (Resample)
    Propagate the particles using the prior model,
    Update weights
    Remove the first elements of baselines
    """
    N = W.shape[0]
    if resample:
        ind = resampling.residual_resample(W)
        x = x[ind]
        params['base'] = params['base'][:, ind]
        params['sqrtQ_x'] = params['sqrtQ_x'][ind]
        params['A_x'] = params['A_x'][ind]
        params['omega'] = params['omega'][ind]
        W = np.repeat(1 / N, N)

    x = np.random.normal(
        params['base'][1, :] + params['A_x'] * (x - params['base'][0, :]),
        params['sqrtQ_x'])

    params = trim_base(params)

    params, W = pf_update_negbin(y, x, params, W)

    return x, params, W
Пример #4
0
    def resample(self, weights):
        # Normalize weights
        #  print (weights)
        weights /= weights.sum()

        N_eff = self.pc
        if weights.sum() == 0.:
            rospy.loginfo("All weights zero!")
        else:
            N_eff = 1 / np.sum(np.square(weights))

        self.n_eff_mask.pop(0)
        self.n_eff_mask.append(N_eff)
        self.n_eff_filt = self.moving_average(self.n_eff_mask, 3)
        print("N_eff ", N_eff)
        print("Missed meas ", self.miss_meas)

        # Resampling?
        if self.n_eff_filt < self.pc / 2. and self.miss_meas < self.pc / 2.:
            #  if N_eff < self.pc/2. and self.miss_meas < self.pc/2.:
            indices = residual_resample(weights)
            keep = list(set(indices))
            lost = [i for i in range(self.pc) if i not in keep]
            dupes = indices[:].tolist()
            for i in keep:
                dupes.remove(i)

            self.reassign_poses(lost, dupes)
            # Add noise to particles
            for i in range(self.pc):
                self.particles[i].add_noise(self.res_noise_cov)
Пример #5
0
    def resample(self, weights):

        print "-------------"
        # Normalize weights
        weights /= weights.sum()
        #  print "Weights"
        #  print weights

        N_eff = self.pc
        if weights.sum() == 0.:
            rospy.loginfo("All weights zero!")
        else:
            N_eff = 1 / np.sum(np.square(weights))

        print "N_eff ", N_eff
        # Resampling?
        if N_eff < self.pc * 0.5:
            indices = residual_resample(weights)
            print "Indices"
            print indices
            keep = list(set(indices))
            lost = [i for i in range(self.pc) if i not in keep]
            dupes = indices[:].tolist()
            for i in keep:
                dupes.remove(i)

            self.reassign_poses(lost, dupes)

            # Add noise to particles
            for i in range(self.pc):
                self.particles[i].add_noise([3., 3., 0., 0., 0., 0.0])

        else:
            print N_eff
            rospy.loginfo(
                'Number of effective particles high - not resampling')