Пример #1
0
 def testBuildNonExistingLayerMobileModel(self):
     """Tests that the model is built correctly without unnecessary layers."""
     inputs = tf.random_uniform((5, 224, 224, 3))
     tf.train.create_global_step()
     with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()):
         pnasnet.build_pnasnet_mobile(inputs, 1000)
     vars_names = [x.op.name for x in tf.trainable_variables()]
     self.assertIn('cell_stem_0/1x1/weights', vars_names)
     self.assertNotIn('cell_stem_1/comb_iter_0/right/1x1/weights', vars_names)
Пример #2
0
    def testAllEndPointsShapesMobileModel(self):
        batch_size = 5
        height, width = 224, 224
        num_classes = 1000
        inputs = tf.random_uniform((batch_size, height, width, 3))
        tf.train.create_global_step()
        with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()):
            _, end_points = pnasnet.build_pnasnet_mobile(inputs, num_classes)

        endpoints_shapes = {
            'Stem': [batch_size, 28, 28, 135],
            'Cell_0': [batch_size, 28, 28, 270],
            'Cell_1': [batch_size, 28, 28, 270],
            'Cell_2': [batch_size, 28, 28, 270],
            'Cell_3': [batch_size, 14, 14, 540],
            'Cell_4': [batch_size, 14, 14, 540],
            'Cell_5': [batch_size, 14, 14, 540],
            'Cell_6': [batch_size, 7, 7, 1080],
            'Cell_7': [batch_size, 7, 7, 1080],
            'Cell_8': [batch_size, 7, 7, 1080],
            'global_pool': [batch_size, 1080],
            # Logits and predictions
            'AuxLogits': [batch_size, num_classes],
            'Predictions': [batch_size, num_classes],
            'Logits': [batch_size, num_classes],
        }
        self.assertEqual(len(end_points), 14)
        self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
        for endpoint_name in endpoints_shapes:
            tf.logging.info('Endpoint name: {}'.format(endpoint_name))
            expected_shape = endpoints_shapes[endpoint_name]
            self.assertIn(endpoint_name, end_points)
            self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
                                 expected_shape)
Пример #3
0
 def testBuildPreLogitsMobileModel(self):
     batch_size = 5
     height, width = 224, 224
     num_classes = None
     inputs = tf.random_uniform((batch_size, height, width, 3))
     tf.train.create_global_step()
     with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()):
         net, end_points = pnasnet.build_pnasnet_mobile(inputs, num_classes)
     self.assertFalse('AuxLogits' in end_points)
     self.assertFalse('Predictions' in end_points)
     self.assertTrue(net.op.name.startswith('final_layer/Mean'))
     self.assertListEqual(net.get_shape().as_list(), [batch_size, 1080])
Пример #4
0
 def testOverrideHParamsMobileModel(self):
     batch_size = 5
     height, width = 224, 224
     num_classes = 1000
     inputs = tf.random_uniform((batch_size, height, width, 3))
     tf.train.create_global_step()
     config = pnasnet.mobile_imagenet_config()
     config.set_hparam('data_format', 'NCHW')
     with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()):
         _, end_points = pnasnet.build_pnasnet_mobile(
             inputs, num_classes, config=config)
     self.assertListEqual(end_points['Stem'].shape.as_list(),
                          [batch_size, 135, 28, 28])
Пример #5
0
 def testNoAuxHeadMobileModel(self):
     batch_size = 5
     height, width = 224, 224
     num_classes = 1000
     for use_aux_head in (True, False):
         tf.reset_default_graph()
         inputs = tf.random_uniform((batch_size, height, width, 3))
         tf.train.create_global_step()
         config = pnasnet.mobile_imagenet_config()
         config.set_hparam('use_aux_head', int(use_aux_head))
         with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()):
             _, end_points = pnasnet.build_pnasnet_mobile(
                 inputs, num_classes, config=config)
         self.assertEqual('AuxLogits' in end_points, use_aux_head)
Пример #6
0
 def testBuildLogitsMobileModel(self):
     batch_size = 5
     height, width = 224, 224
     num_classes = 1000
     inputs = tf.random_uniform((batch_size, height, width, 3))
     tf.train.create_global_step()
     with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()):
         logits, end_points = pnasnet.build_pnasnet_mobile(inputs, num_classes)
     auxlogits = end_points['AuxLogits']
     predictions = end_points['Predictions']
     self.assertListEqual(auxlogits.get_shape().as_list(),
                          [batch_size, num_classes])
     self.assertListEqual(logits.get_shape().as_list(),
                          [batch_size, num_classes])
     self.assertListEqual(predictions.get_shape().as_list(),
                          [batch_size, num_classes])