def evaluate(): """Eval CIFAR-10 for a number of steps.""" with tf.Graph().as_default() as g: # Get images and labels for CIFAR-10. eval_data = FLAGS.eval_data == 'test' images, labels = resnet18.inputs(eval_data=eval_data) # Build a Graph that computes the logits predictions from the # inference model. logits = resnet18.inference(images) # Calculate predictions. top_k_op = tf.nn.in_top_k(logits, labels, 5) # Restore the moving average version of the learned variables for eval. variable_averages = tf.train.ExponentialMovingAverage( resnet18.MOVING_AVERAGE_DECAY) variables_to_restore = variable_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g) while True: eval_once(saver, summary_writer, top_k_op, summary_op) if FLAGS.run_once: break time.sleep(FLAGS.eval_interval_secs)
def evaluate(k=5): """Eval CIFAR-10 for a number of steps.""" with tf.Graph().as_default() as g: # Get images and labels for CIFAR-10. images, labels = resnet18.inputs(eval_data=True) # Build a Graph that computes the logits predictions from the # inference model. W1 = tf.placeholder(tf.float32, [7, 7, 3, 64]) W2_1_b2a = tf.placeholder(tf.float32, [3, 3, 64, 64]) W2_1_b2b = tf.placeholder(tf.float32, [3, 3, 64, 64]) W2_2_b2a = tf.placeholder(tf.float32, [3, 3, 64, 64]) W2_2_b2b = tf.placeholder(tf.float32, [3, 3, 64, 64]) W3_1_b1 = tf.placeholder(tf.float32, [1, 1, 64, 128]) W3_1_b2a = tf.placeholder(tf.float32, [3, 3, 64, 128]) W3_1_b2b = tf.placeholder(tf.float32, [3, 3, 128, 128]) W3_2_b2a = tf.placeholder(tf.float32, [3, 3, 128, 128]) W3_2_b2b = tf.placeholder(tf.float32, [3, 3, 128, 128]) W4_1_b1 = tf.placeholder(tf.float32, [1, 1, 128, 256]) W4_1_b2a = tf.placeholder(tf.float32, [3, 3, 128, 256]) W4_1_b2b = tf.placeholder(tf.float32, [3, 3, 256, 256]) W4_2_b2a = tf.placeholder(tf.float32, [3, 3, 256, 256]) W4_2_b2b = tf.placeholder(tf.float32, [3, 3, 256, 256]) W5_1_b1 = tf.placeholder(tf.float32, [1, 1, 256, 512]) W5_1_b2a = tf.placeholder(tf.float32, [3, 3, 256, 512]) W5_1_b2b = tf.placeholder(tf.float32, [3, 3, 512, 512]) W5_2_b2a = tf.placeholder(tf.float32, [3, 3, 512, 512]) W5_2_b2b = tf.placeholder(tf.float32, [3, 3, 512, 512]) logits = resnet18.inference(images, W1, W2_1_b2a, W2_1_b2b, W2_2_b2a, W2_2_b2b, W3_1_b1, W3_1_b2a, W3_1_b2b, W3_2_b2a, W3_2_b2b, W4_1_b1, W4_1_b2a, W4_1_b2b, W4_2_b2a, W4_2_b2b, W5_1_b1, W5_1_b2a, W5_1_b2b, W5_2_b2a, W5_2_b2b) # Calculate predictions. top_k_op = tf.nn.in_top_k(logits, labels, k) # Restore the moving average version of the learned variables for eval. # variable_averages = tf.train.ExponentialMovingAverage( # resnet18.MOVING_AVERAGE_DECAY) # variables_to_restore = variable_averages.variables_to_restore() # saver = tf.train.Saver(variables_to_restore) saver = tf.train.Saver() # Build the summary operation based on the TF collection of Summaries. summary_op = tf.summary.merge_all() summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g) while True: precision = eval_once(saver, summary_writer, top_k_op, summary_op, k, W1, W2_1_b2a, W2_1_b2b, W2_2_b2a, W2_2_b2b, W3_1_b1, W3_1_b2a, W3_1_b2b, W3_2_b2a, W3_2_b2b, W4_1_b1, W4_1_b2a, W4_1_b2b, W4_2_b2a, W4_2_b2b, W5_1_b1, W5_1_b2a, W5_1_b2b, W5_2_b2a, W5_2_b2b) if FLAGS.run_once: break time.sleep(FLAGS.eval_interval_secs) return precision
def tower_loss(scope, images, labels): """Calculate the total loss on a single tower running the CIFAR model. Args: scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0' images: Images. 4D tensor of shape [batch_size, height, width, 3]. labels: Labels. 1D tensor of shape [batch_size]. Returns: Tensor of shape [] containing the total loss for a batch of data """ # Build inference Graph. logits = resnet18.inference(images, train=True) # Build the portion of the Graph calculating the losses. Note that we will # assemble the total_loss using a custom function below. _ = resnet18.loss(logits, labels) # Assemble all of the losses for the current tower only. losses = tf.get_collection('losses', scope) # Calculate the total loss for the current tower. total_loss = tf.add_n(losses, name='total_loss') # Attach a scalar summary to all individual losses and the total loss; do the # same for the averaged version of the losses. for l in losses + [total_loss]: # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # session. This helps the clarity of presentation on tensorboard. loss_name = re.sub('%s_[0-9]*/' % resnet18.TOWER_NAME, '', l.op.name) tf.summary.scalar(loss_name, l) return total_loss
def tower_loss(scope, images, labels): # Build inference Graph. logits = resnet18.inference(images, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, train=True) # Build the portion of the Graph calculating the losses. Note that we will # assemble the total_loss using a custom function below. _ = resnet18.loss(logits, labels) # Assemble all of the losses for the current tower only. losses = tf.get_collection('losses', scope) # Calculate the total loss for the current tower. total_loss = tf.add_n(losses, name='total_loss') # Attach a scalar summary to all individual losses and the total loss; do the # same for the averaged version of the losses. for l in losses + [total_loss]: # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training # session. This helps the clarity of presentation on tensorboard. loss_name = re.sub('%s_[0-9]*/' % resnet18.TOWER_NAME, '', l.op.name) tf.summary.scalar(loss_name, l) return total_loss